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ADVANCED MATERIALS COUNCIL
Advanced materials are building-and infrastructure-related materials that exhibit high-performance attributes 
but have not reached widespread application in the commercial marketplace.
High-performance attributes include enhanced security, safety, resiliency, energy conservation, environmental 
sustainability, durability, cost effectiveness, functionality, productivity and maintainability. 
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CIVIL INFRASTRUCTURE, INCLUDING 
buildings, bridges, roadways, tunnels, 
dams and airfield pavements, may be 
subjected to multi-hazards such as 
earthquakes, fires, storm surges, winds, 
projectiles and blast loading. Protection 
from catastrophic failures of infrastruc-
ture due to such extreme loadings can-
not be assured despite many decades of 
research in structural design and ma-
terials development. This is illustrated 
by events such as the 1995 Alfred Mur-
rah Federal Building bombing, the 1994 
Northridge Earthquake in California, 
and the 2005 Hurricane Katrina in the 
Gulf of Mexico. 

Within the concrete technology com-
munity, the development of increasing-
ly high-strength (compressive) concrete 
over the last several decades has given 
hope for stronger structures. Howev-
er, there is also increasing recognition 
that when a certain level of compres-
sive strength is reached, the failure of a 
structure or structural element will be 
dominated by brittle fracture in tension. 
This recognition has led to an expan-
sion of materials property development 
towards tensile ductility in recent years 
(see, e.g. Fischer and Li, 2006). This new 
focus of research and development may 
provide a rational basis to support the 
construction of new infrastructure and 
the rehabilitation of existing infrastruc-
ture for enhanced, robust resiliency 
against multi-hazards.

This article introduces Engineered 
Cementitious Composite (ECC), which 
has its microstructure designed from 
the ground up for tensile ductility. As 
a result, the material shows high dam-
age tolerance under a variety of load-
ing conditions. After a brief summary 
of the micromechanics-based design 

approach behind ECC, highlights of its 
tensile properties and some recent field 
applications of this emerging materi-
al are reviewed. The article concludes 
with brief comments on the future de-
velopment of smart functional ECCs.

DeSIgN aPProach aND 
ProPerTIeS of ecc

The design approach behind ultra-
ductile ECC is significantly different 
from that behind ultra high-strength 
concrete. The most fundamental prin-
ciple of designing ultra high-strength 
concrete is the tight packing of parti-
cles, leaving as little void as possible in 
the hardened composite. This approach 
results in a delay of cracks growing out 
from material defects and extends the 
strength and stiffness of the concrete. 
This delay in crack initiation is a result 
of both smaller defect sizes and high-
er intrinsic matrix toughness, in accor-
dance with fracture mechanics.  

However, once a crack grows, its 
propagation is unstable and results in 
a high composite brittleness. The ad-
dition of fibers reduces this brittleness, 
making the material usable in a struc-
tural member.  

One of the pioneers of this ultra 
high-strength design approach is Dr. 
Hans Henrik Bache at Aalborg Port-
land Group, in Denmark in the 1980s. 
The result was a fiber-reinforced, high-
strength concrete known as Densit, 
with compressive strength reaching 
120 mega pascals (MPa) (Bache, 1981).  
Since then, a number of derivatives 
of this class of concrete material have 
been developed and commercialized. 
These include Ductal, developed by La-
Farge in France (Richard and Cheyr-
ezy, 1995), and Cor-tuf, developed by 

the U.S. Army Engineer Research and 
Development Center (ERDC) (Neeley 
and Walley, 1995). These later develop-
ments have been further aided by the 
availability of particle-packing models, 
ultra-fine particles and strong chemical 
dispersants, and a specialized curing re-
gime, whereby compressive strengths in 
excess of 200 MPa and tensile strength 
in excess of 10 MPa have been reported. 
Even with fiber reinforcement, howev-
er, this class of material shows tension-
softening responses when tested under 
uniaxial tensile loading, with a strain 
capacity no more than 0.2 percent.

As pointed out earlier, high-strength 
concrete performs well under pure com-
pression loading.  However, many struc-
tures experience flexural and shear 
loading that invariably introduces ten-
sile stresses into the material. In dynamic 
loading, compressive stress waves travel-
ing through the thickness of a concrete 
element and approaching a free surface 
would reflect back as a tensile wave that 
results in high-velocity debris ejected 
on the back side of the structure (Forqu-
in and Erzar, 2009). No amount of steel 
reinforcement can prevent this type of 
failure mode involving concrete spalling 
and fragmentation, since the reinforce-
ment always requires a concrete cover.

Even on the direct impact side, the 
materials adjacent to the crater un-
der a penetrating object often devel-
op tensile radial cracks (Cargile et al, 
2002). Again, this suggests the pres-
ence of high local tensile stress. Con-
crete structural elements subjected to 
fire often spall due to a combination of 
differential thermal stress and internal 
pressure generation by vaporization of 
capillary pore water. The resulting ten-
sile stresses eventually lead to brittle 

High-Ductility Concrete for  

Resilient Infrastructures
Earthquakes, fires and blasts are known for their enormous capability to 
destroy everything in their path. Could a new type of concrete hold the 
answer to lessening the damage?
By Victor C. Li, University of Michigan
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fractures of the surface concrete, en-
abling direct contact between next 
line reinforcing steel and flames, and 
reducing the time it takes for steel to 
soften and structurally collapse.  

In order to withstand tensile stress-
es and prevent brittle fractures, a high 
composite material toughness is pre-
ferred. If the fracture failure mode is ful-
ly suppressed by the material’s tensile 
ductility (for example, if the material 
can be made to undergo plastic yielding 
deformation without localized fracture), 
the phenomena highlighted earlier can 
be avoided. As a result, the structure ex-
periences high damage tolerance. This 
forms the design philosophy behind 
ECC that results in the development of a 
fundamentally ductile concrete.

ECC is designed based on the mi-
cromechanics of crack initiation, fiber 
bridging and steady-state crack propa-
gation (Maalej and Li, 1994; Lin and Li, 
1997; Li et al, 2002) in a brittle matrix 
reinforced with randomly distribut-
ed short fibers. By deliberately allow-
ing cracks to form at a tensile stress 
just below the fiber-bridging capacity 
(for example, before fiber bridging ca-
pacity is exhausted via fiber pull-out or 
rupture), and by controlling the crack 
width through the crack-propagation 
mode (flat crack versus Griffith-type 
crack), ECC has the ability to under-
go non-catastrophic damage in the 
form of multiple crack formation while 
maintaining tensile load-bearing ca-
pacity.  

Analogous to ductile metal where 
strain hardening is accompanied by dis-
location damage to the material, ECC 
undergoes tensile strain-hardening ac-
companied by the formation of multi-
ple microcracks. Macroscopically, the 
brittle fracture mode of normal con-
crete is turned into a “plastic yielding”-
like mode in ECC. To control when 
microcracks should be allowed to initi-
ate and whether the flat crack propaga-
tion mode dominates over the Griffith 
crack mode, micromechanical param-
eters of the fiber, matrix and the fiber/
matrix interface in the composite must 
be properly tuned. Guided by the mi-
cro-fracture and fiber-bridging models, 
the optimized micromechanical param-
eters are then translated into specific 

combinations of fiber, matrix and inter-
face characteristics. In this manner, the 
design goal of ECC is targeted at tensile 
strain-hardening with ductility of sever-
al percent (several hundred times that of 
normal concrete).  Compressive strength 
is retained but ensured not to violate the 
tensile strain-hardening criteria.

FIGURE 1 shows the tensile stress-
strain relationship of a typical ECC ma-
terial obtained from a uniaxial tension 

coupon test. FIGURE 2 shows the com-
pressive strength development curve 
of an ECC.  In this example, the tensile 
ductility and the compressive strength 
are 3 to 4 percent and 70 MPa at 28 
days (Wang and Li, 2007). A very high 
strength version of ECC (with the com-
pressive strength reaching over 160 
MPa) has recently been developed at 
the University of Michigan in collabora-
tion with the ERDC.

Figure 1. The typical tensile stress-strain curve of ECC . Image courtesy of  Wang and Li, 
2007.

Figure 2. The typical compressive strength development curve of ECC. Image courtesy of  
Wang and Li, 2007.
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FIGURE 3 shows the bending behav-
ior of ECC under a flexural load. When 
loaded to beyond the elastic range, the 
material flexes rather than fractures, 
hence the nickname “bendable con-
crete.” 

The availability of a micromechan-
ics-based model allows highly versatile 
tailoring of ECC for a variety of desirable 
fresh and hardened concrete character-
istics, in addition to strength and ductil-
ity. For example, self-compacting ECC 

(Kong et al, 2003) and sprayable ECC 
(Kim et al, 2003) have been developed. 
In addition, lightweight ECC (Wang and 
Li, 2003) with density below 1 g/cc, and 
high-early-strength ECC (Wang and Li, 
2006) with compressive strength reach-
ing 21MPa at 4 hours have also been 
developed. These various versions of 
ECC have been designed to meet spe-
cific performance requirements in dif-
ferent applications. ECC is a family of 
fiber-reinforced ductile cement-based 

composite materials designed on a mi-
cromechanical basis.  

aPPlIcaTIoNS of ecc
ECC is used in water and energy in-

frastructure as well as in the building 
and transportation industrial sectors. 
Apart from cost-saving considerations, 
the driving force behind the applica-
tions of ECC includes enhanced safe-
ty (Li, 1993), durability (Lepech and Li, 
2006; Sahmaran and Li, 2010) and envi-
ronmental sustainability (Lepech et al, 
2008).  

Sprayable ECC was applied to the 
rehabilitation of irrigation channels in 
the western United States (FIGURE 4). 
In this application, the damage toler-
ance of ECC was used to combat the 
perennial freeze-thaw failure of normal 
concrete channels. ECC has been dem-
onstrated to be resistant to freeze-thaw 
cycles with or without the presence of 
de-icing salts (Lepech and Li, 2006; Sah-
maran and Li, 2007). Other applications 
of ECC in water infrastructure include 
the surface repair of an eroded dam in 
Hiroshima, Japan (Kojima et al, 2004). 
In this application, the water-tightness 
of ECC was exploited.

ECC was used as a surface protec-
tion coating (FIGURE 5) for pipelines 
used in the oil/gas industry. Damage re-
sistance, improved durability and flexi-
bility were cited as the rationale behind 
its use in this application (Lepech et 
al, 2010). Other potential applications 
of ECC being considered in energy in-
frastructure include its adoption in the 
foundation and the towers of offshore 
wind turbines.

ECC was used in the form of cou-
pling beams (FIGURE 6) in the core 
of tall buildings (Maruta et al, 2005). 
These coupling beams provide high 
energy-absorption capabilities under 
reverse-cyclic-shear loading during 
seismic events. These coupling beams 
were precast offsite and installed on-
site by casting the core wall around the 
beams from floor to floor. Other poten-
tial building/housing infrastructure in-
cludes prefabricated modular floor and 
roof panels comprised of a thin-walled 
ECC slab and a steel truss substructure 
(Fischer et al, 2009). The advantageous 
characteristics of these composite 

Figure 4. Sprayable ECC applied to irrigation channel repair. Image courtesy of LFL & 
Associates, 2008.

Figure 3. This image shows the extreme flexing capabilities of ECC under a large 
bending load. Image courtesy of UM News Services.
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panels include a lightweight, high load-
ing capacity and modular manufactur-
ing process.

ECC was applied to transporta-
tion infrastructure as a link-slab (FIG-
URE 7) in a bridge deck (Lepech and Li, 
2009) on Grove Street Bridge in South-
east Michigan in 2005. The tensile de-
formability of ECC was exploited to 
accommodate bridge deck movements 
induced by thermal expansions and 
contractions. The objective was to elim-
inate the maintenance requirements 
associated with typical bridge-deck-ex-
pansion joints. The Michigan Depart-
ment of Transportation’s ECC Special 
Provision states a minimum of tensile 
strain capacity of two percent to ac-
commodate the deformation demand 
due to combined temperature, shrink-
age and life loading.  

By virtue of enhanced durabili-
ty and reduced maintenance needs, 
a lifecycle cost reduction of 12 per-
cent, accompanied by a resource use 

reduction of 38 to 48 percent, total 
primary energy and global warming 
potential of 40 percent and 33 per-
cent respectively, as well as a 34 to 76 

Figure 5. ECC surface coating for oil/gas pipe protection. Image courtesy of Lepech et al, 
2010.

Figure 6. (a) The 41-story Nabeaure Yokohama Tower under construction and (b) Schematics showing coupling beams (in yellow) on 
each floor. Image courtesy of T. Kanda, 2005.
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percent reduction of water pollutants 
were estimated (Keoleian et al, 2005). 
This ECC link-slab design was adopt-
ed in 2006 in the A22 highway segment 
that extends from Bolzano to the Aus-
trian border bridge in north Italy. In 
addition, the 972m long cable-stayed 
Mihara Bridge in Hokkaido, Japan em-
ployed a 38mm thick continuous ECC 
overlay on a steel plate (Mitamura et al, 
2005). This bridge opened to traffic in 
2005. In this application, the high ten-
sile ductility of ECC was converted into 
higher flexural resistance with a thin-
ner cross section of the bridge deck.

coNcluSIoNS
ECC has been established as one of 

the most ductile concretes in full-scale 
applications today. Its tensile ductili-
ty has been translated into enhanced 
safety and durability, and the environ-
mental sustainability of a broad array of 
civil infrastructures in the water, ener-
gy, building and transportation sectors. 
These initial applications demonstrate 
several important considerations in 
any newly developed material, includ-
ing economic feasibility, field scale 
processing of the material, and ma-
terial ingredient localization. Equally 
important, they add to the knowledge 
base of how and where such a material 
should be applied in future infrastruc-
ture systems.

While an increasingly large da-
tabase of mechanical and physical 
properties has been accumulated by 
researchers around the world that 
supports the damage-tolerant be-
havior of ECC under a variety of me-
chanical and environmental loading 
types, its potential application for in-
frastructure resiliency against multi-
hazards should be further studied 
systematically. The impact resistance 
of ECC was recently investigated by 
Yang and Li (2006, 2010) using drop 
weight tests. These studies reveal that 
special care must be exercised in for-
mulating ECC for high-rate loading, 
which induces rate sensitivity. When 
the fiber, matrix and fiber/matrix in-
terface are properly tailored, however, 
the extreme ductility shown in FIG-
URE 1 can be retained under impact 
loading. These investigations should 
be expanded to include high-velocity 
projectile and blast loading effects. 

The fact that ECC exhibits dam-
age tolerance also makes it attractive 
as a future multifunctional materi-
al. For example, the self-healing abil-
ity of ECC was recently reported. Both 
recovery of transport (permeability) 
and mechanical properties (stiffness) 
were observed (Yang et al, 2009) af-
ter the deliberately damaged sample 
was exposed to water and air. In addi-
tion, self-sensing functionality of ECC 

is being studied (Hou, 2008). It is en-
visioned that future generations of re-
silient civil infrastructure will also be 
intelligent with the ability to self-re-
port health conditions in terms of 
damage and recovery extents. Such in-
telligence supports the recovery of in-
frastructure functions subsequent to 
extreme loading events, as well as as-
sists in maintenance scheduling op-
timized for safety and sustainability 
under normal service loading. n

Parts of the research described in this 
article have been sponsored by the Na-
tional Science Foundation, the Nation-
al Institute of Science and Technology, 
and the U.S. Army Engineer Research 
and Development Center.  The author 
gratefully acknowledges these sup-
ports.

Victor C. Li is an E. Benjamin Wylie 
Collegiate Professor of Civil and En-
vironmental Engineering as well as a 
Professor of Materials Science and En-
gineering at the University of Michigan. 
His research interests include the de-
sign, processing and characterization 
of advanced fiber-reinforced cementi-
tious composites, and the elevating of 
the ultra-ductility of such materials to 
the mechanical and durability perfor-
mance of structural elements and sys-
tems.

Figure 7. (a) ECC link-slab on (b) Grove Street Bridge in Ypsilanti, MI. Image courtesy of Lepech and Li, 2009.
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