Keeping Energy Confined and Making Information Flow

The Smart Building of Tomorrow

Christian Hoepfner Fraunhofer Center for Sustainable Energy Systems

T

Y.

Rtis

1

Atlantic Wharf, Boston, MA Source: bostonproperties.com

Cape Cod Cottage Source: flickr.com/photos/jeffreypitcher

Passive House by Karawitz Architecture Source: archdaily.com

1

ONE WAY

Boley Building Kansas City, MO ^{Source: Wikipedia}

Lewis Center Oberlin College, OH Source: new.oberlin.edu

BUILDING ENCLOSURES: HIGH PERFORMANCE & SUSTAINABLE

High-Performance Thermal Insulations

IEA Annex 39 report 2007

Bjørn Petter Jelle - BEST3 Conference 2012

ASPEN Aerogels

Potential of high-performance insulation systems is high ...

- □ Superior thermal performance R-10 to R-50/inch (depends on technology and applications)
 - Perfect for heating dominated climates
- Thin profiles often eliminate need for costly installation
- □ Installation process different than for most conventional systems adhesion, blankets
- Up to 70% reduction in space conditioning loads from reduced conduction and infiltration
- Cost example: Actual material costs of vacuum insulation much lower than system costs
 - Due to low manufacturing volumes, lack of installation practice

... but cost and implementation challenges remain

- VIPs packaging can significantly decrease nominal R-value due to thermal bridging
- Example shown:
 - VIP with fumed silica: R-40 per inch
 - VIP foam assembly protects panels from mechanical damage
 - □ Nominal R-value reduction over 60%

- Solution: Optimize VIP packaging to reduce thermal bridging
 - Testing and 3-D thermal modeling
 - Optimize installation methods for interior and exterior wall applications
 - Development of specific framing system for walls

Kleinfeldt Mychajlowycz Architects Inc. Toronto, Canada

DYNAMIC ENVELOPES TO MATCH DYNAMIC ENVIRONMETAL LOADS

Dynamic Envelope Strategies

Solar Energy Kosny et al. 2013

Fraunhofer ISE, Germany

www.tjskl.org.cn

Cosella-Dorken, Germany

- Thermal design of building envelopes walls, roof, and attic assemblies is still based on steadystate, "thermally static" criteria, but they are subject to dynamic climatic conditions
 - Results in relatively low thermodynamic (exergy) efficiencies
- Diminishing returns of adding increasingly more thermal insulation
 - Incremental energy savings
 - Insulation embodied energy and emissions of ozone- depletion gases (for some insulations)
- Value of dynamic strategies:
 - Up to 50% reduction of space conditioning loads
 - Load shifting: up to 90% reduction in peak-hour cooling loads
 - Enhanced comfort

PCM-enhanced Attic Insulation Systems

- Attics with significant thermal insulation are not best performing design options
- Integrating PCM into attic floor insulation can significantly reduce (20% to 35%) atticgenerated thermal loads
- Greatest benefit from PCM at bottom or middle of attic floor insulation
- Cooling load shifting
- Inorganic PCMs have large cost reduction potential

Advanced Insulations & Dynamic Envelopes: Solutions for Any North American Climate

Ballasted PV on Walmart Rooftop

Source: Walmart

Miasolé on Walmart Rooftop Source: Walmart

Transformations Zero Energy Home – Devens Green, MA Source: greenenergytimes.net

Fraunhofer

USA

SunPower Installation Westport, CT Source: SunPower Success Stories

Dow Powerhouse Source: Dow Powerhouse Facebook

BISEM PV Curtain Wall Retrofit Source: Bisem-USA

Ubiquitous Energy Source: Miles Barr

An Integrated and Sustainable Vision: Affordable Net-Zero Energy Homes

Source: Scott (2013)

- □ Traditional home designs, ~1,800 ft², 3 BR
- Cost-optimized Passive House Cost ~ \$125/ft²
 - Excludes incentives, land, road, engineering, permits, septic, soft costs and fill
- Highly efficient homes for cold climates
 - Passive solar measures More southern windows, few northern, strategic overhangs
 - Highly insulated double-stud walls (R-47) and attic (R-63)
 - □ Tight construction ~0.5 ACH mechanical ventilation systems
 - Ductless minisplits for heating and cooling peak heating load <11,000 Btu in Massachusetts
- Actual energy consumption: 915 kWh/year (~0.5kWh/(sf x yr); ~\$15/month)
- Next: Plus energy houses to power electric vehicles

THE SMART BUILDING OF TODAY & TOMORROW

Building Energy Management Solutions of the Future: Automated and People-centric

- Provision of superior comfort tailored to the needs of individual people
- Optimization of whole-building energy and energy cost performance
- Continuous evaluation of building systems' performance to automatically detect and diagnose subpar building operations (ongoing commissioning)
- Support of the electric grid as PV penetration continues to dramatically increase
- Integration of new devices (highly scalable)

Source: Building Robotics, CrowdComfort

Ongoing Commissioning and Optimal Whole-building Control: Applying data to enhance building performance

- Ongoing Commissioning: Continuous monitoring of building performance to ensure buildings function as intended
 - Automated fault detection and diagnostics: Actionable information to address faults
 - □ Typical energy savings of 5 20% of whole-building energy consumption
 - Becomes more important as sophistication of building HVAC systems and controls increases
 - Improve occupant comfort
- Optimal Building Control: Dynamic selection of the optimum set of control strategies to minimize whole-building energy costs and consumption
 - □ Approaches include machine-learning algorithms and model-predictive control
 - Greatest value currently for peak demand management energy cost savings of up to 30%

Sources: Brambley et al. (2005), Roth et al. (2008)

Building Energy Management to Enhance Grid Performance

- Today: Limited demand response, frequency regulation, locational marginal pricing
- Future: Dynamic building load management in response to the dynamic state of the grid not just shedding load to avoid demand charges
- Reduce building operating costs by monetizing additional grid support functions
- Increase the amount of renewable energy that can be deployed on a feeder
 - Particularly for high-penetration PV scenarios mitigate mid-day PV production surplus
- Integration with energy storage greatly increases potential
 - Increase building resilience: Prioritize building operations to enable extended islanded operation

Source:

Amount of information in and out of buildings

1900

2100

1800

... as does it for energy ...

... but more information will enable to decrease energy consumption BROADBAND (EARLY 2000s)

Freiburg Green City, Germany Source: germany.travel

ne H

Fraunhofer

ALC: N

UC Davis West Village, Davis, CA Source: westvillage.ucdavis.edu

SPEED LIMIT

Sec. 10

Contact

Christian Hoepfner

Center Director, Fraunhofer CSE choepfner@fraunhofer.org

