Exploring visual and affective qualities of equivalent colors under architectural-scale, full-field exposure conditions

Ute C. Besenecker, Ph.D.
School of Architecture, Rensselaer Polytechnic Institute, Troy, NY
Ted Krueger, Ph.D. 1, Zhazhina Pearson, Alexa Way, Ph.D. 2, John D. Bullough, Ph.D. 3
1 School of Architecture, Rensselaer Polytechnic Institute, Troy, NY
2 Cognitive Science Department, Rensselaer Polytechnic Institute, Troy, NY
3 Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY

I. EXTENDED ABSTRACT

1.1. BACKGROUND

Color used in architectural settings impacts our perception of form, space, and ambience (Laganiée and van der Pol 2011). The increased availability of light-emitting diodes (LEDs) eases the implementation of luminous color into the built environment. This is evident in urban light and color festivals (Besenecker 2015), as well as architectural projects (Bahamón and Alvarez 2011, CoopHimmelblau 2012).

LED lighting technology introduces the novelty and opportunity to mix and match luminous colors in various ways. Using color matching models (chromaticity), nearly-identical-appearing colors (so-called metamer) can be created that have different spectral compositions depending upon the specific technologies used to create them (Fairchild 2013, Boyce 2003). We set out to explore how individuals may respond to metameric colors in a spatial environment that are produced using different technologies.

Current research in visual perception demonstrates that, when viewed with the full field-of-view, the hue, saturation, and brightness of these colors do not necessarily match (Besenecker and Bullough 2016, Gerlach 2003, Horuguchi et al. 2015). In addition, health related sciences suggest that different spectra can have distinct physiological, neurological, and psychological effects; this is especially true for spectral compositions with varying melanopsin stimulation (Lockley et al. 2005a, Lucas et al. 2014, Vandewalle et al. 2010). We used mixed research methods to conduct architectural-scale studies to explore possible differences in visual, affective and physiological qualities for nearly equivalent stimuli, matched very closely for chromaticity and light level (Besenecker and Krueger 2015).

1.2. METHODOLOGY / PROCEDURE

Two different color series were tested, amber and cyan. For each, there were seven different ways to produce near-metameric color conditions: 1) color filtered tungsten, 2) distinct narrowband LED, 3) RGB source LED, 4) 7-color source LED, 5) video projector, 6) colored paint illuminated by white tungsten, and 7) colored paint illuminated by white LED. The conditions illustrated semicircular “tubicles” (18" height x 9" diameter) that were located in a 50” x 60” x 32” black box studio space (see Figure 1). A qualitative study was performed first (Study 1), with 7 participants who were free to comment on the conditions close-up (immersed) and from afar in comparison to a reference. Based on the responses we received, we conducted a quantitative follow-up study (Study 2) with 12 participants that used a fixed viewing location. All subjects also participated in sessions where heart rate and blood pressure were measured. About half of each of the participant groups had professional experience working with light and/or color.

1.3. OUTCOME / DISCUSSION

Results from both Study 1 and 2 suggested that there were reliable differences between the seven near metameric conditions for the perceived visual perceptions of brightness and saturation as well as the affective qualities of emotional and spatial qualities. Furthermore, we were interested in the possible relationships between visual, affective and physiological measures. We assessed whether there were statistically significant correlations between the dependent variables of visual (brightness, saturation), affective (emotional, spatial quality) and physiological (heart rate, blood pressure) measures in Study 1 and 2. Figure 1 depicts these significant correlations (p<0.05).

In addition, as we noticed that variations between individuals’ responses were substantial, we have started to more closely examine the influences of factors such as, age, sex/gender, and color experience. Future work will continue to examine these relationships and extend this work by applying consistent with using different colors and spatial set-ups.