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This paper explores the use of new tools for the 
creation of novel methods of identifying faults in 
building energy performance remotely.  With the rise 
in availability of interval utility data and the prolif-
eration of machine learning processes, new methods 
are arising which promise to bridge the gap between 
architects, engineers, auditors, operators, and util-
ity personnel.  Utility use information, viewed with 
sufficient granularity, can offer a sort of “genome,” 
that is a set of “genes” which are unique to a given 
building and can be decoded to provide information 
about the building’s performance.  The applications 
of algorithms to a large data set of these “genomes” 
can identify patterns across many buildings, provid-
ing the opportunity for identifying mechanical faults 
in a much larger sample of buildings that could previ-
ously be evaluated using traditional methods.

INTRODUCTION
In terms of buildings sciences, the energy performance of a building 
represents an outcome that has been generated through a myriad of 
disciplinary interactions.  For example, performance is dependent on 
the shape of the building and the materials chosen by the architect, 
the mechanical systems are designed by the mechanical engineer, the 
maintenance of systems by the building operators, and the way the 
building is used – control settings etc., is determined by individual 
end users.  With so many and varying pieces, expertise, and interests 
controlling a single outcome, it is perhaps no wonder that much of 
our existing building stock suffers from faults in energy performance 
design, operation, or construction.

The traditional method for uncovering building energy performance 
faults has been through the energy audit, a process by which a skilled 
analyst thoroughly surveys the building and relevant information 
about the building, both on and offsite.  The general purpose of the 
audit is to identify problem areas and ascertain changes that can be 
made to enhance energy performance.  While this tried and true 
method has doubtlessly produced measurable gains in the perfor-
mance of individual buildings, it is not without its limitations.  Audits 
are time consuming and labor intensive, requiring specially trained 

professions capable of evaluating the interdisciplinary complexity of 
building energy systems – one building at a time.  As a result only a 
very small portion of the total building stock can receive this valuable 
service in any given year.  Audits are also something of a “snapshot” of 
a building, in that the auditor generally visits only for a short time and 
is able to observe only very limited operations first hand and follow up 
visits are even more time consuming and expensive.  This means that 
many audited building have faults that go unidentified and continue 
to damage ongoing building energy performance even after close 
examination.  

In order to improve the range and persistence of building energy 
performance analysis, new tools are needed that can evaluate much 
larger portions of the stock much more efficiently.  Ideally, such tools 
would be capable of producing the type of analysis previously gen-
erated by energy audits in much more expedient and cost effective 
way.  It would also be capable of seeing building performance for a far 
longer period of time, identifying patterns and thereby exposing faults 
which may be visible only over many months for example.  

BUILDING ENERGY IN THE AGE OF BIG DATA
The simplest utility meters are those which measure use continuously 
and generate some value for usage which can be read and recorded 
manually one time for each utility billing cycle.  For the problem of doc-
umenting usage in a given month to allow for accurate billing, these 
simple meters may prove adequate.  However, advances in metering 
technology over the past decades have significantly expanded the 
scope and amount of data which can be collected and analyzed.

For example, electrical meters which measure consumption on much 
shorter “intervals” (15 seconds in some cases) are now becoming com-
monplace.  These interval measurements allow for the monitoring of 
energy consumption on a functionally real-time basis, improving both 
the feedback and the ability to find common faults in usage patterns 
that previously were available only to expensive, smart building auto-
mation systems (BAS).  

An example of collected electrical Interval utility data can be seen 
in Figure 1.  This data belongs to a school in Illinois, and has been 
recorded every half-hour.  The red line on the graph represents electri-
cal use for a single day, in this case September 15, 2010.  On this day, it 
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is visible that the early morning hours exhibit relatively low and con-
sistent electricity usage.  This likely represents a ‘base load’.  The term 
base load denotes the electricity which is constantly and consistently 
used by a building for always-on functions The blue line, represents 
the average electricity use throughout the day for the entire month 
of September. It paints a slightly different, although not incongruous 
picture.  The blue, monthly line is slightly lower, which could be caused 
by changes in weather over the course of the month, or could simply 
reflect that weekends, when energy use is low, are included in this 
daily use curve.  The curve is a bit smoother, with less of a plateau, 
which is not uncommon, as monthly curves tend to “average out” 
outlier values.  For example, it may have been rainy in the morning 
with the skies clearing later in the day.  This is captured by fine grained 
interval data, but gets averaged out in monthly data.

In this case, the “utility curves” reflect approximately what we might 
expect from a school.  That is, the school uses little energy at night, has 
a period of very high usage while school is in session, and then a period 
of lower usage as evening activities take place, gradually reducing until 
all activities are over.  One may note that usage appears higher than 
one would expect in the late evening, but there are a number of pos-
sible explanations for this, from late-night custodial work to errantly 
scheduled mechanical systems.  

In the case of a single building, this type of analysis is straightforward 
and easy to see and quickly digest.  The single day utility curve was 
generated with only 48 values.  The monthly utility curve was gener-
ated with a more robust but still manageable 1,440 values.  As one 
“zooms out,” however, the picture becomes much more complicated. 
If this meter was installed in September 2010, then at the date of this 
writing, it has been operational for 76 months, or something like 2,300 
days, meaning it has collected well over 100,000 readings.  Multiply 
this number by the thousands of buildings with smart meters installed, 

and the data stream quickly overwhelms our ability to provide this 
type of analysis for the entire building stock.

In this paper, we propose applying machine learning and genomic 
testing techniques to the problem of identifying energy performance 
faults in large numbers of buildings quickly and continuously – with-
out human intervention.  In the following sections we first review 
the literature on remote building energy modeling, we then propose 
expanding on that work with the introduction of a new remote energy 
analysis approach.  We follow with information regarding the potential 
of the tool and some of the obstacles to its creation.  We then provide 
our conceptualization of the way forward including genomic analysis.  
We conclude with thoughts on future research and next steps.

PREVIOUD WORK ON INTERVAL UTILITY DATA
[In recent years, there has been some academic interest in interval 
utility data and what it can reveal about buildings from a distance. 
Aksoezen et al (2014) focuses on the relationship between interval 
utility data and buildings with known parameters in an effort to find 
a correlation between building attributes and energy performance.  
Other research, such as that by Edwards et al (2012), has had a focus 
which is more predictive in nature, in this case using interval utility 
data to try and predict “next hour” consumption.  Similarly, Espinoza 
et al (2005) considered utility data at the substation level with an eye 
toward predictive analytics. They were able to cluster substations into 
groups (e.g. residential, business) using utility profile analytics to work 
through end use analysis.  

Still other work has focused on using interval data to discern building 
occupants building use patterns, rather than focusing on just the build-
ings themselves.  Albert and Rajagopal (2006) use smart meter data 
to try and predict both occupancy and the characteristics of building 
users.  Similarly, Kwac et al (2013) find some success using interval 
utility data from specific homes to segment utility customers by their 
lifestyles.  The roll of occupant behavior as it relates to energy is also 
explored by Santin et al (2009), who try to evaluate how great of an 

Figure 01: Eletrical Utility Load Profile for a School Building for the month of 
Semptember (Blue) and the day of September 15 (Red)
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impact occupant behavior can have on heating and cooling energy use, 
again relying on residential hourly load profiles.  

This type of data has even been used specifically to identify energy 
faults in buildings to some degree.  For example, Brown et al (2009) 
monitor water, electricity, and gas use for 300 buildings over a seven 
year period.  Using water as a proxy for occupancy and comparing this 
to the utility profiles, they were able to identify four common heating 
failure modes.

In terms of the private, building energy analysis sector, we find at least 
three companies who currently claim the ability to perform limited, 
auditing-type tasks with no building visits or minimal building vis-
its, to wit FirstFuel, Agilis Energy, and Retroficiency (Lee et al 2014).  
Unfortunately, these are private entities with proprietary algorithms, 
so their methods and efficaciousness is difficult to ascertain.

Other research use a classification and regression tree (CART) algo-
rithm to disaggregate energy usage using expert rules and then use 
statistical methods to identify outliers to identify faults.  Lie et al 
(2010) examine this method for detecting abnormal electrical con-
sumption for lighting in buildings.  Using past electrical consumption 
records, occupancy, and time of day (as a surrogate for daylighting 
contribution), a decision tree is constructed using occupancy and 
time of day as independent variables.  The analysis identified outli-
ers when occupancy was low, yet electrical consumption was high.  
Khan et. al (2013) examined three different data mining techniques 
for detecting abnormal lighting energy consumption using hourly 
recorded energy consumption and peak demand (maximum power) 
data.  CART, K-Means, and density-based spatial clustering of applica-
tions with noise (DBSCAN) were used. Interval meters can represent 
massive amounts of data which depend on some type of large-scale 
data analytics techniques.  

Machine learning techniques that learn from data are now being 
developed.  In one example, Lee et. al (2004) examine using a gen-
eral regression neural-network (GRNN) model for on-line detection 
at the subsystem level. Energy fault detection techniques have also 
been embedded in building automation systems.  They typically rely 
on a system of rules to determine a conditional probability for each 
of a plurality of possible fault causes given the detected fault (United 
States Patent Application, 2011, 2014).  In this case the inputs to the 
system are embedded in the BAS. 

While the academic literature would seem to fill in bits and pieces of 
what can be accomplished by applying data analytics to interval utility 
data, it seems as though no complete process has emerged that allows 
for remote auditing and fault detection.  While the tools looked at in 
the private sector seem to have promise in the targeted evaluation of 
a client’s building or portfolio of buildings, their inner-workings and 
exact capabilities remains opaque.  Today, there exists no publically 
available means of evaluating interval utility data across wide num-
bers of buildings to detect energy performance faults in an efficient 
and low-cost way.  

DEVELOPING THE TOOLS
Clearly, there exists a need for a tool which can put this data to its opti-
mal use.  With advances in machine learning, it would seem plausible 
that a program could be developed with would be capable of review 
huge amounts of utility data and finding anomalies.  Unfortunately, 
the real problem of creating such a tool is not so straightforward.

First, there exists the problem of having a basis for comparison.  If 
one imagines being given a utility profile and asked to find faults by 
comparing to some baseline, the question would quickly emerge as to 
what should represent the baseline.  There seems to be, at minimum, 
three methods by which “standard behavior” could be established

Comparison to Self

Perhaps the simplest method of identifying faults would be compar-
ing the current performance of a building to its past performance or 
performance under another condition.  This method has the advan-
tage of not requiring a large library of utility data for comparison, but 
would rather enable one to find anomalous data within the frame of 
just one building, if the building had been generating data for some 
period of time.

An example of this kind of analysis can be seen in Figure 02.  Figure two 
represents the average, weekday, non-holiday energy consumption 
of a school for three months, June (blue), July (orange), and August 
(gray).  Even without an outside basis for comparison, an anomaly 
appears immediately visible.  Though the data appears phase-shifted, 
it is simple to see that in June and August, electricity seems to have 
a longer midday plateau.  In contrast, July seems to have a sharp dip 
right at the center of the day.  Considering that the summer schedule 
for this school was consistent throughout these three months, clearly 
something was changed operationally in this July, and then apparently 
changed back in August.

It could be that cooling equipment was set back in July, while it was 
allowed to cool an unoccupied building in part or all of June and 
August.   It could be that lighting was turned on or off at different hours 
in this time.  It could be that a piece of equipment was not operating 
and, therefore, not consuming power.  Whatever the explanation, the 
anomaly is clear through comparing how the building operated at one 
point to how it operated at another.  

This strategy has the downside of requiring some information about 
the building.  Without knowing that the operation schedule had been 
static in this month, the anomaly detected could have been dismissed 
as a simple temporary change in use.  Without know that the building 
was a school, its seasonality of operation would make little sense.  

Comparison to a ‘Real’ Reference Building

If there is not a long history of interval utility operation, or informa-
tion about context is unavailable, a more complicated method may 
be called for.  Instead of comparing a buildings current operation to 
older operation, or comparing June to July, it may be more sensible to 
compare the operation of a school to the operation of all other schools 
in the same area or under the same climate conditions.  

The Building Genome Project
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Of course, not all schools have similar utility curves.  These can be 
affected by many variables including size, schedule, occupancy, and 
mechanical configuration.  Yet, with a sufficient number of schools, 
one could ostensibly generate a “standard school profile” based on a 
library of data.  Faults could then be detected in any one building by 
comparing it to the “standard” profile and recognizing where sharp 
differences occurred.  

In a sense, this is not that different form the common practice of 
“benchmarking.”  Benchmarking compares the energy consumption 
of a building, usually on a normalized per unit area basis, to the con-
sumption of a library of similar buildings.  This technique has long been 
used to compare a subject building to the building stock as a whole.  An 
interval utility comparison would be similar, except instead of making 
one comparison for one year, it would be capable of making thousands 
of comparisons at every half hour.  

The downside to this method is that it requires a great deal of similar 
buildings to create a baseline for comparison.  Because comparison of 
just a few buildings would be susceptible to “noise” in the data, a large 
sample of utility data would be required.  It would also require know-
ing which utility streams belonged to buildings, or having an algorithm 
capable of making this distinction.

Comparison to a ‘Simulated’ Reference Building

Where a database of similar buildings is unavailable, or where the 
buildings are too distinct from one another to create a true average 
profile for comparison, the most sensible method may be comparing 
the real-world utility profile of a given building to a simulated utility 
profile.  

Consider the example building shown in Figure 03.  In these two 
graphs, the real utility profile of an academic building on the University 
of Illinois Campus (called the “Bill” profile, i.e. from utility bills) is com-
pared to an output of a simulated version of the building (called the 
“Model” profile, i.e. from an energy model).  Because the model is 
impervious to things like equipment breaking or errors of operation, 
it can represent how the building “should” perform.  In looking at 
this example, we see the building is using more steam that would be 
expected during the spring shoulder season.  Likewise, the building is 
using less electricity than expected in June, and more in September.  

METHODOLOGICAL CONSTRUCTION
Our methodology for defining acceptable energy use patterns for a 
particular building includes using real and simulated reference data to 
detect degradations in energy efficiency performance of a particular 
building, and to diagnose probable faults.  A preliminary flow chart for 
this process is shown in Figure 04. It shows the relationship between 
data management, analytical process, and reporting necessary to 
accomplish this goal. The high-level logic for our automated process 
includes using energy consumption data along with building classifica-
tion information to first identify the correct building reference and 
then to diagnose potential energy-wasting faults in individual build-
ings in a continuous analytical process.

Building Screening

Continuous fault detection and diagnostic analysis provides informa-
tion at a rate much faster than an organization’s ability to respond 
with appropriate follow-up analysis and physical repairs. We propose 
a selection process that prioritizes buildings with the greatest savings 
potential.  The process parameters can be adjusted to select for the 
desired number of buildings. Several metrics could be used as an ini-
tial screening process when selecting buildings for fault detection and 
diagnostic analysis. Calculation and comparison of total energy use, 

Figure 02: Electrical Utility Profiles for a school building in June (Blue), July 
(Orange) and August (Gray).
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Figure 05: Example of a possible screening process that prioritizes and selects buildings for fault 
detection and diagnostic analysis.  

Figure 03: Comparision of Bill and Model Profiles on an annualized basis.

[Figure 04: A flow chart describing the automated process that uses energy consumption data and 
limted building information to identify and diagnose energy-wasting faults

The Building Genome Project
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energy use intensity (kBtu/ft2-year), electricity use intensity (kWh/
ft2-year), and natural gas use intensity (therms/ft2-year) are among 
the parameters used in the screening process. Figure XX provides an 
example of a possible screening process. 

Genomic Optimization Techniques.

One technique which has been explored is genomic modeling.  
Genomic modeling is an iterative, minimum-seeking algorithm.  
While it was originally designed for optimization and not classifica-
tion problems, the challenge of matching utility profiles to a set of 
building “traits” which most likely generated them makes for a novel 
application.

In this process, a solution space of buildings with random “traits” are 
generated, then the “fittest” solutions move on to the next “genera-
tion.”  Fitness is determined, in this case, by the cost of function of 
aggregate difference from the given utility profile.  Using this method, 
it is possible to find the set of building faults (in a fault detection exam-
ple) or parameters (in a classification example), which are most likely 
to generate utility profiles like a given subject utility profile.  While this 
approach is nascent, its early returns are promising.   

CONCLUSION
The development and testing of such a technology would involve the 
cooperation of multiple independent actors.  It requires Architects 
that can classify buildings; Building Energy Specialist who can correctly 
diagnose energy profiles; utility customers to share their data; com-
puter scientists to automate the processes described - thousands of 
times per second.  

Yet, if successfully developed, the technology has potential to allow 
all of these stakeholders to cooperate in new and interesting ways.  
Building engineers would be able to look up anomalous performance 
in their buildings and check them against a huge dataset to figure 
out what is likely causing the anomaly.  Utility companies could send 
out annual reports to building owners showing potential faults in 
operations and potential ways to ‘fix’ them.  Architects could specify 
systems by looking at the most common failure modalities in specific 
types of buildings in specific locations or working to address these 
potential faults in the design phase – to effectively ‘nip it in the bud’.  
Policy officials could optimally allocate retrofitting incentives where 
their return on investment in terms of energy savings could be opti-
mized.  Monitoring companies could alert building engineers within 
seconds of a system fault or failure.  

Decoding the building genome would require an immense amount of 
interdisciplinary cooperation and understanding, just as was the case 
in decoding the human genome.  Yet, the collaboration required to 
create these tools would be sure to spur more collaboration, as the 
barriers that exist between project stakeholders, each with his/her 
own incentives and aims, could be substantially reduced.
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