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ABSTRACT: Commercial and residential buildings are tremendous users of energy, accounting for more 
than 72% of electricity use in the U.S. Among the main building performance factors (i.e., enclosure, system, 
and control), that influence a building’s energy performance, building façade features are one of the major 
parametric elements. The recorded Energy Use Intensity (EUI) of existing buildings performance come from 
relevant organizations (such as CBECS and USGBC), which contain aggregated energy performance 
information (based on the ranges of certain parameters), but it is difficult to identify the specific condition of 
each building category within a selected climate zone. In addition, the averaged performance data is too
general to determine if a specific building is energy efficient or not. On the other hand, it is very time-
consuming to develop a simulation model in software to each case, which also needs very detailed 
information about geometry, system, and operation schedule and control modes. This is because an
accurate energy performance prediction mainly depends on a variety of detailed data about indoor thermal 
conditions, mechanical system performance, occupancy level, etc. In this research, a vision-based 
performance prediction model was developed to estimate building energy consumption based on simplified
façade attribute information and weather conditions. Building façade features, including shading, window-to-
wall ratio, orientation, surface-to-volume ratio, etc., were collected along with the energy performance 
records from New York City building energy benchmarking database. Based on this training dataset, a 
prediction model was established to estimate annual energy use. The developed estimation model adopted 
architectural physical attributes and their dynamic ambient environmental conditions as input variables. This 
prediction approach will provide a more specific baseline and goal especially in the pre-design phase, it also 
could asses EUI by a minimum amount of data.
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INTRODUCTION
In 2010, the U.S. consumed 97.8 quads of energy, which represented 19% of global energy consumption 
(Program and Efficiency 2012). The buildings sector in the United States, including residential and 
commercial buildings, accounted for about 41% of primary energy consumption in 2010. Space cooling, 
space heating and lighting are the dominant end uses, which accounted for about 52% of total energy 
consumed by buildings sector. Façade features, such as exterior wall type, glazing type, shading type, 
window-to-wall ratio, etc., have a great influence on space heating, cooling and even lighting demand (Shan 
2014). A good building façade design will be greatly useful to reduce energy demand by selecting 
appropriate façade features according to local climate characteristics. 

Energy Use Intensity (EUI) represents a building’s energy use as a function of its size or other 
characteristics, which is calculated by dividing annual building energy consumption in one year by the total 
gross floor area as kBtu/sf. EUI is a very important indicator (Andrews and Krogmann 2009) to evaluate 
building energy performance and energy saving potential. Annual EUI could also be the baseline for building 
owners and designers to set a reasonable energy reduction goal for the following years. 

Architecture 2030 was established to promote energy reduction by changing buildings into a solution of 
global energy crisis (Architecture 2030 2011). Architecture 2030 uses the Commercial Buildings Energy 
Consumption Survey (CBECS) 2003 data, which provides national and regional medians as the baseline.
CBECS is a national sample survey (“About Commercial Buildings Energy Consumption Survey” 2012) that 
collects information on the stock of U.S. commercial buildings, including their energy-related building 
characteristics and energy usage data. Energy use intensity (EUI) baseline currently relies on a national or 
local energy usage average based on census division, climate zone, building size or year constructed.
These factors can’t represent the specific physical condition of each building, since it doesn’t consider
individual building features and local climate condition. The average EUI value based on certain census 
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division, climate zone or HDD/CDD (heating degree day/cooling degree day) range, is also too general to 
categorize weather condition.

Figure 1: National median reference EUI of selected building types. Source: (Energy Star 2014)

Demands from urban planners and building designers require a new method to predict building energy use 
through a simple way at the beginning of design stage, which could be based on easily accessible 
information. Many mathematical methods were used to calculate building energy use other than computer 
simulation which depends on building detailed information input. Rajesh et al. (Kumar, Aggarwal, and 
Sharma 2013) used Artificial Neural Network (ANN) to estimate total energy use for heating and carbon 
emissions. The results presented the total load for a six stories building by using ANN method which 
collected data representing the past history and performance of the real system. Decision tree method is 
another approach to predict building energy use in practice. Zhun et al. (Yu et al. 2010) demonstrated that a 
decision tree method can predict building energy demand by 93% accuracy for training data and 92%
accuracy for test data. Case-based reasoning (CBR) was used by Danielle et al. (Monfet et al. 2014) to 
forecast building energy demand and the model was validated by real monitored data. The advantages of 
using CBR include easily updating feature, simple understanding of reasoning, ability to deal with missing 
information and large amounts of predictors. Regression model based on basic visualized building façade 
features is a feasible alternative to estimate building energy consumption instead of using average data from 
survey or running simulation in complicated software. The main goal is to develop a customized baseline 
model considering specific façade features and local climate condition. Due to its simplicity and quick 
processing time, the model would be applicable to set a reasonable EUI reduction baseline for building 
performance management and improvement. In addition, the impact of basic façade features on energy 
performance in different climate zone could be clearly presented by sensitivity analysis in order to provide a 
guideline of how façade features could influence building energy use based on real energy database. The 
result could also draw more attention on the significance of building energy use disclosure to public from 
government benchmarking policy. 

1.0 METHODS

Multiple regression models are developed to predict energy performance by entering a minimum number of 
façade data. Instead of using details of building information, like construction thermal properties, mechanical 
system, operation schedule, etc., multiple linear regression is adopted with easily accessible façade 
features, which include building height, orientation, volume, floor area, façade area, site area, window-to-
wall ratio, volume-to-façade area ratio, etc.

There are mainly three parts of the methodology: data collection (DC), data processing (DP), and model 
development (MD) as represented in Figure 2.

1. For data collection, generally 2 types of data should be collected. One is real energy use data, 
another is corresponding façade feature. Energy use data is presented by Energy Use Intensity
(EUI) as the target metric from building energy benchmarking and disclosure data by local 
government. On the other hand, façade features are collected by using different methods which 
contain manual estimation (visual reading and physical model rebuilding), existing building model 
reading (SketchUp etc.) and direct information collection from design drawing or specification. 
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Other potential factors like built year and HDD/CDD could also be easily obtained from open 
resources.

2. Data processing section is served as data preparation for the following model development. For 
annual EUI model development, this step could be skipped since annual EUI data is the basic data 
provided by different building energy resources. 

3. Finally, multiple linear regression is used to develop the EUI estimation model package based on 
collected façade information and EUI data. In this section, the significance of each predictor and 
correlation between predictors and response could also be analyzed with the consideration of local 
code requirements, design strategies and best practices. Other regression methods would be used 
for comparison, which include stepwise regression. In the end, all regression models should be 
validated by appropriate method.

Figure 2: Methodology.

The predicted outcome of this research is a new EUI estimation package, which could provide building EUI 
baseline at different scale. In this paper, the annual office EUI estimation model in New York City is the 
expected result. 

1.1. EUI data collection
Building energy benchmarking is a method to get building energy data as a baseline to compare to other 
properties performance. It will give owners a better understanding of how much energy their buildings 
exactly consume for a time period and how much energy reduction potential they can get when adopting 
energy efficient measures. To accomplish the task of benchmarking, the energy monitoring and recording
are needed, and the data should be submitted by using a common format to be available to put into 
database. The most commonly used tool is Portfolio Manager developed by EPA (Energy Star 2014), which 
is normally used to track and evaluate energy use for commercial buildings. The benefits of using 
benchmarking (Milliken and Jones) to keep track of building energy use are listed in the following figure 3.

Figure 3: U.S. Building benchmarking and transparency policies. Source: (IMT 2014)

In U.S. there are 9 cities (IMT 2014) which committed to implement energy benchmarking and disclosure 
programs for commercial buildings (Cox, Brown, and Sun 2013), which include Seattle, San Francisco, 
Austin, Minneapolis, Cambridge, Boston, New York City, Philadelphia, Washington, DC, etc. In New York 
City, benchmarking policy of Local Law 84 (LL84), part of Greener, Greater Buildings Plan (GGBP) was 
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adopted in 2009 (GGBP 2013), which requires all non-residential buildings with floor area over 50,000 
square feet to submit and disclose their building energy and water data to the city. The results show that the 
median source EUI for office properties in 2010 and 2011 are 213.3 kBtu/sf and 207.3 kBtu/sf and the 
median Energy Star score increased from 64 to 67.  

In this paper, office building energy benchmarking data in New York City are used to develop an exemplary 
regression model which could predict annual energy use for office buildings in New Your City. 99 office 
buildings in Manhattan, New York City from the benchmarking database are firstly selected. Then 28 
buildings with existed SketchUp model are further sorted out in order to read the façade features easily and 
accurately. In most selected buildings there are 2 years of reported energy data available (24 of them have 
both years). In total 50 datasets with full information of both real EUI and façade features are the basis for 
the further regression analysis.

1.2. Façade feature definition
All building façade features could be easily readable without knowing detailed information. Generally, 
geometry attributes are the basic predictors. Roof or wall R-value, window U-value and SHGC, etc. are not 
used since the fabric information are not accessible without the permission from owner or designer. The 
original 17 predictors are showed in the table below which explains the definition of each parameter. 

Table 1: Predictors definition and explanation.

No. Façade feature Definition

1 Height From open air pedestrian entrance to highest occupied floor1

2 Floors Total occupied stories or levels2

3 Orientation Positing of a building with respect to the North3

4 Operable window Window could be open or close based ventilation need4

5 Volume Inner space volume enclosed by external envelope
6 WWR Window-to-wall ratio (total window area/total exterior wall area)
7 Window Area Total glazing area
8 Façade Area Total area of all parts of the structure’s façade
9 Site Area Total site area within fixed boundaries
10 Floor Area Total floor area inside the building envelope
11 V/FA Ratio of volume to façade area
12 V/SA Ratio of volume to site area
13 FA/SA Ratio of façade area to site area
14 HDD Heating degree day (the demand for energy to heat a building)
15 CDD Cooling degree day (the demand for energy to cool a building)
16 Adjacent Building If adjacent building exists to cast shading on objective building5

17 Built Year Year of construction complete
Note: 1. Height is measure from the level of the lowest, significant, open-air, pedestrian entrance to the finished floor level of the highest occupied floor within the 
building (Council on Tall Buildings and Urban Habitat).

2. Floors refer to the total levels of a building which could be used by occupants.
3. Long axis along with North-South is quantified as 1, NE-SW is 2, E-W is 3, SE-NW is 4.
4. With operable window is quantified as 1, without operable window is quantified as 0.
5. No adjacent building is quantified as 0, while adjacent building on the north side is 1, others are clockwise defined by 2 to 8. 

In this research, a basic assumption is that EUI could be estimated only based on simple façade features as 
well as a few other factors, like HDD/CDD which represents dynamic local weather condition. Another factor 
built year is used to take all the requirements by code in each time period into consideration. It assumed that 
after the first national/local building energy code established a building had to meet the requirements of 
corresponding codes or standards, including fabric thermal performance, system efficiency, ventilation rate 
requirements, etc. The built year is easy to obtain as a basic building information. In addition, since in urban 
context, adjacent building will cast shades on objective buildings which in turn will influence heat gain 
through the façade especially glazing area, adjacency is another factor which is collected for regression 
analysis.
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1.3. Regression method
To develop regression model, many tools could be considered for analysis, like SPSS Statistics (IBM 2014),
MATLAB (MAthWorks 2014), etc. In this research, another statistical analysis tool, Minitab® 17 (Minitab 
2014) is used for data analysis and regression model development. By using Minitab, a large amount of data 
can be processed (Minitab 2013) for basic statistical analysis, regression and correlation analysis, 
hypothesis tests, model validation, prediction, and graphs making, etc. All façade features and EUI data can 
be input as basic training samples. The correlation between each factor and EUI could be analyzed by 
calculating Pearson’s correlation coefficient. Then different regression models could be compared to 
determine the most accurate model which is sufficient to predict response values for new observations. 

Rather than only using one independent variable as predictor in regression, multiple linear regression (MLR)
has multiple independent variables. The same purpose as simple linear regression is to develop the 
relationship between response and predictors and predict the new response with a new set of predictors at 
an acceptable confidence level. The multiple linear regression is presented as the following form:= + 1 1 + 2 2 + 3 3 + + +                                     
(1)   

Where
is the constant while 1, are the regression coefficients, 1, are the significant predictors and is 

the random error. 

In addition, when there are a large number of predictors to be used in regression, stepwise regression 
should be used to removing the least significant predictor at each step. The order of removed predictors also 
indicate the significance which could be analyzed to determine which predictor is the most important one in 
a certain area. This is also called backward elimination (Support Minitab 2014). This automatic process is 
useful to identify the most significant predictors. To analyze the results of regression models, multiple 
indicators could be calculated to evaluate the characteristics of the corresponding models. The main 
indicators are listed in the table 2.

Table 2: Key indicators in regression model.

No. Indicator Explanation Accepted Range

1 Pearson Correlation Whether 2 continuous variables are linearly related (-1,1)/closer to 1
2 P-value The probability of obtaining a test statistic (0,1)/closer to 0
3 VIF Multicollinearity (correlation between predictors) NA
4 R2 Pct. of response variable variation can be explained (0,100%)/closer to 100%
5 R2 (adj) R2 adjusted for the number of predictors in the model (0,100%)/closer to 100%
6 R2 (pred) Models predictive ability (0,100%)/closer to 100%
7 Durbin-Watson whether the correlation between adjacent error terms is 0 (1,3)/closer to 2
8 Error rate discrepancy between the estimated values NA/closer to 0

2.0 RESULTS AND DISCUSSION

2.1. Basic data analysis
All datasets with façade features were firstly analysed by dividing into different groups. The results represent 
the correlation between reported site EUI with each predictor through interval plotting. The confidence 
interval is 95% by default which indicates 95% probability from the future experiment within this interval. 

Figure 4 indicates the correlation between site EUI and construction year, which divided data into 2 groups 
(before and after 1980), since the first New York state energy code was established in 1979 (U.S. DOE 
2014). Office buildings that were built before 1980 have higher mean value of 102.06 kBtu/sf than 92.74 
kBtu/sf after 1980. Even the confidence intervals are slightly overlapped, but with more strict requirements of 
building performance from improved energy code, buildings consume lower energy as expected. Tall 
buildings were grouped into megatall (more than 600 ft), supertall (300 to 600 ft) and tall (165 to 300 ft) for 
the analysis of height (CTBUH 2013). Figure 5 shows the significant difference of energy use for different 
height tall buildings. Megatall buildings consumed the highest energy, followed by super tall and tall 
buildings. National median site EUI of 67.3 kBtu/sf is only in the tall building EUI range.  The overall 40% of 
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WWR for prescriptive fenestration requirement (NYCECC 2011) was used to divide all datasets into 2 
groups and the results presented that WWR is a significant factor to influence office building energy use in 
terms of heating and cooling load by solar heat gain. The mean value of buildings with over 40% WWR was
107.88 kBtu/sf compared to 84.81 kBtu/sf for lower WWR buildings. Buildings with operable windows 
consumed less energy since the mixed mode of natural ventilation and mechanical ventilation is more 
energy efficient, which was proved by the fact that the mean value 84.9 kBtu/sf for buildings with operable 
window is lower than 104.25 kBtu/sf for buildings without operable window. 

        
Figure 4: Site EUI (kBtu/sf) and construction year.           Figure 5: Site EUI (kBtu/sf) and building height.

                   
Figure 6: Site EUI (kBtu/sf) and WWR .                            Figure 7: Site EUI (kBtu/sf) and operable window.

                   
Figure 8: Site EUI (kBtu/sf) and V/FA ratio.                      Figure 9: Site EUI (kBtu/sf) and orientation.

                   
Figure 10: Site EUI (kBtu/sf) and floor area.                      Figure 11: Site EUI (kBtu/sf) and HDD.
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V/FA ratio stands for the compactness which has significant impact on heating load. Figure 8 illustrates that 
buildings with V/FA less than 40 had the lower mean EUI of 89.03 kBtu/sf, which means in this heating 
dominated area, compact buildings are not necessary consuming less energy than buildings with greater 
façade area. It also depends on glazing and exterior wall thermal performance and other factors. Figure 9
shows there was no significant difference of EUI between N-S orientation and NE-SW orientation while 
buildings with NW-SE had the highest mean EUI value of 111.01 kBtu/sf. It is because that the main façade 
facing south west has more heat gain through direct sun exposure. Figure 10 indicates that buildings floor 
area over 1000000 had significantly higher energy use than smaller area buildings. Another important 
predictor is heating-degree day which is extremely important for heating demand of a buildings. In total there 
are only 2 years energy data used in this regression research but it is clear that most buildings consumed 
more energy in 2011 than in 2012, which is showed in Figure 11, since the HDD of 3272 in 2011 is higher 
than 2988 in 2012 while other façade features didn’t change within these 2 years.

2.2. MLR and stepwise regression
EUI can be predicted by the façade features through 2 methods: MLR and Stepwise Regression. The results 
are showed in table 3. Total façade area was replaced by 8 different direction façade area. In MLR, all 25 
predictors were included in the every model. The R2 value indicates that all predictors could explain 77.64% 
of the variance in EUI while the adjusted R2 means only 56.18% of EUI variable variation can be explained 
by its relationship with predictor variables. D-W statistic is closer to 2, which means there is no significant 
autocorrelation. Only orientation and floor area are significantly related to annual EUI at an -level of 0.05 
since P-values are close to 0. VIF values for coefficients are greater than 10 which means the regression 
coefficients are poorly estimated due to severe multicollinearity.

By comparison, R2 from stepwise regression means 88.15 % of the variance in EUI. The adjusted R2 is also 
improved when compared to MLR. The predicted R2 value is 77.72% which indicates the model does not 
appear to be overfit and has adequate predictive ability since it’s close to R2 and adjusted R2. All P-values of 
corresponding predictors are less than 0.05. The results showed the advantage by using stepwise 
regression is not only to improve each indicators of accuracy but also to identify a useful subset of 
predictors. The stepwise process systematically added the most significant variable or removed the least 
significant variable during each step. As a result, predictors including height, WWR, orientation, operable 
window, floor area, V/SA ratio, HDD as well as south and west façade area are the most important factors 
which have greater impact on energy use for office buildings in New York City.

Table 3: MLR and stepwise regression coefficients and indicators.
Determination Multiple Linear Regression Stepwise Regression
R2/ R2 (pre) 77.64% - 88.15% 77.72
Predictors Coef P-value Coef P-value
Constant 27302 0.174 -75.3 0.047
Height 0.087 0.593 0.1553 0.000
Floors 0.06 0.979 - -
Built year -0.339 0.586 - -
WWR 0.542 0.507 0.719 0.000
Orientation 26 0.033 18.77 0.000
Operable Window -29.9 0.15 -19.65 0.000
Volume 0 0.995 - -
Window Area 0.000149 0.55 - -
Site Area 0.00035 0.729 - -
Floor Area -0.00007 0.031 -0.000054 0.000
V/FA -0.84 0.809 - -
V/SA 0.185 0.515 0.1352 0.001
FA/SA -10.29 0.11 -9.47 0.000
Adjacency -1.85 0.502 - -
HDD 5.86 0.178 0.0324 0.006
CDD -22.7 0.181 - -
N Façade Area -0.01101 0.201 - -
S Façade Area 0.125 0.23 0.001340 0.000
W Façade Area -0.00249 0.2 -0.000634 0.009
E Façade Area -0.0889 0.243 - -
NW Façade Area -0.000146 0.806 - -
NE Façade Area -0.00017 0.892 - -
SW Façade Area -0.000118 0.849 - -
SE Façade Area 0.000571 0.471 - -

Figure 12 illustrates that the predicted EUI from the developed MLR and Stepwise regression models, and 
the average error rates are 9.03% and 6.70% respectively. Both of the results are less than 10%, which are 
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better the static baseline from CBECS and TargetFinder. In addition, the dynamic results calculated by 
regression model are more meaningful and realistic as energy reduction baselines. Stepwise regression has 
higher predictive ability to estimate new observations, which could be used as the baseline estimation 
model.

Figure 12: Estimation results and site EUI.

CONCLUSIONS
To estimate building energy use, both simple multiple linear regression model and stepwise regression 
model were used and the results showed that stepwise is more reliable and accurate to predict EUI than 
MLR. Building EUI estimated by basic façade features is more specific since it considers the individual 
building attributes as well as local climate condition. The result is dynamic according to different features 
input which is better than one constant and median baseline from CBECS as the baseline. In addition to 
assist to EUI benchmarking for improving building energy efficiency, the research potential outcomes could 
be applied for new construction to provide a more accurate baseline and energy reduction target at the 
predesign stage and to evaluate basic façade design decisions. While for existing buildings, it can help to 
estimate EUI when there is no detailed building information available for deep simulation and get a 
reasonably correct energy consumption rate by inputting a minimum amount of data. Customized baseline 
could be more acceptable for building owners to know building energy saving potential and adopt measures 
to improve energy efficiency, which in turn will benefit energy conservation for the whole society.

The limitation of the simplified EUI estimation model is the limited range of application and the assumption 
that other important factors can be incorporated into “built year”. In this paper, EUI estimation model can be 
only used for office buildings in New York City. More data are needed to generate more regression models 
for different function of buildings and different climate zones or locations. In addition, other factors also have 
great influence on building energy use, such as envelope thermal properties, HVAC system efficiency, 
lighting fixtures, even building use schedules. Regression model based on simple façade features is more 
useful when no detailed data are available for energy use calculation no matter by simulation or real-time 
monitoring, so one of the basic precondition of using regression model is assuming when building was built 
in a certain period it had to meet all fabric and system efficiency requirements for corresponding code or 
standard. The future work could also consider the extended predictors when more information are available.
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