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ABSTRACT: The design and operation of building systems frequently face a conflict goals between providing acceptable 
thermal comfort conditions and reducing building system’s relevant energy consumption. Integrating individually 
different occupants’ thermal comfort preferences into the building thermal environment control strategy has high 
potential to contribute to overcoming this conflict issue. Therefore, the goal of this study was to develop an intelligent 
control algorithm to maximize energy conservation efficiency while enhancing the occupants’ thermal comfort and 
satisfactions. Considering individual occupants’ different thermal preferences, two occupancy conditions were selected 
in this study: single-occupancy condition (SOC) and multi-occupancy condition (MOC). The control logic is different 
between SOC and MOC, but the control for SOC can be adopted as the fundamental principle of the multi-occupancy 
condition. The SOC experiments were conducted to survey subjects’ thermal preference pattern while the thermal 
environmental conditions changed from 18 ºC to 30 ºC in the climate chamber. Meanwhile, subjects’ physical parameters 
were collected by heart rate sensors and survey forms to confirm the correlation between the indoor thermal condition 
and subjects’ individual features. With the consideration of real-time environment conditions and human individual 
features (such as gender, BMI, and heart rate), subject’s individual thermal preference pattern were captured and learned 
by machine learning algorithm. The occupants’ thermal comfort preference under different environmental condition 
can be predicted by the developed machine learning algorithm. Based on individuals’ thermal preference pattern, 
Overall Thermal Dissatisfied (OTD) index was developed to determine the optimal set point temperature for minimizing 
the overall thermal dissatisfactions. The study result revealed the energy conservation potential up to 42% savings while 
significantly increased occupants’ thermal comfort in a workplace environment.
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INTRODUCTION
Heating, ventilation and air conditioning (HVAC) systems has been playing an important role in providing occupants 
comfortable thermal environment, and are the largest energy consumption part in buildings (Vahid Vakiloroaya et al. 
2014). The energy cost of the building operation accounts for approximately 40% of the world energy consumption. One 
of the most cost-effective method to save energy is increasing the energy efficiency of the building operations (Atilla Y. 
1995). Improperly configured building systems waste approximately 20% of building energy usage, which is about 8% of 
the total energy usage in the United States (Brambley et al. 2005). Therefore, topic of saving on energy consumption of 
the building operation attract great attention by companies and scientist (Kolokotsa, D., et al. 2001). However, energy 
saving should not sacrifice user’s welfare (F. Nicol, M. Humphreys, 2002.) occupants thermal comfort is the fundamental 
task of the HVAC system. It is necessary to adopt advanced control strategies on HVAC systems. The main objective is 
providing comfortable thermal environments for the occupants, and minimizing energy consumption at the same time 
(A. Hernández, 1994).
 
The multi-occupancy condition (MOC) is the occupancy condition that several occupants share one thermal zone. 
Occupants have different thermal preference and thermal stress tolerance, which make the control of the typical central 
HVAC system difficult to balance different occupants’ thermal requirement. However, multi-occupancy condition is 
dominant, especially in office building. Simply finding a consensus cannot solve the problem since different individuals’ 
thermal comfort range might not overlap.
 
With the rapid development of the artificial intelligence technologies researchers made effort to develop intelligent 
system for HVAC system considering both energy conservation and users’ thermal comfort conditions (Huang S, Nelson 
RM. 1994.). Started in 1990s, artificial intelligence (AI) method has been applied to the control of the building systems. 
Both conventional and bioclimatic buildings adopted artificial intelligence (AI) techniques to improve the system control. 
The development of evolutionary algorithms optimizes the intelligent controllers, which can contribute to the control 
of the intelligent buildings’ subsystems (Lopez L, et al., 2004).  The synergy of the neural networks technology and 
evolutionary algorithms optimize the control of system to overcome the non-linear features of PMV calculations, time 
delay, and system uncertainty. (Dounis AI, Manolakis DE. 2001; Singh J, Singh N, Sharma JK. 2006 ; Kolokotsa, 2001; 
Kolokotsa, 2001)Taking occupants’ participation into the control system is becoming more and more popular control 
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strategy, since occupants directly involvement can significantly improve occupants’ thermal comfort condition. There 
are many artificial product coming into the market and became very popular, even though there are some limitation 
of these products. Nest Learning thermostat is one of the most popular artificial thermostat product in the market. 
Even though it got a great success in consumer market and had a good performance in energy saving as well as thermal 
comfort improvement, there are still some limitations that cannot be ignored. Nest only focus on residential buildings 
and cannot solve multi-occupants thermal requirement conflict. Moreover, Nest did not consider occupants physical 
condition. The only learning feature is users’ living pattern, which is not reliable enough. However, users-based control 
strategy is a significant merit of Nest learning thermostat.
 
2.0  OBJECTIVE
Importance of the smart HVAC control system and problems the current HVAC system faced especially the thermal 
requirement of the multiple occupants’ condition. The current industry standard and PMV model cannot meet the 
occupants’ thermal requirement. The goal is to develop the control algorithm that can improve the thermal comfort 
condition while reduce the energy consumption. The proposed algorithm can generate the set-point considering the 
multiple occupants’ thermal preference in one HVAC zone. Thus, the objectives of this research is to develop occupants-
based data-driven thermal environment control approach that maximize energy conservation efficiency while 
enhancing the occupants’ thermal comfort and satisfactions.
 
3.0  METHODOLOGY
3.1. Overview of methodology
In this research, both individual and multi-occupants experiments were conducted in the climate chamber B11, located 
in the basement of Watt Hall at the University of Southern California. The individual experiment is single occupancy 
experiment. Each participants took individual experiment to track their thermal preference pattern. Data of each 
participant’s experiment was collected in individual database. Based on the individual experiment data, individual 
artificial neural network (ANN) model was developed. The ANN model can predict participant’s thermal comfort for 
the similar environmental condition. Overall thermal dissatisfied index was developed to solve the multi-occupants 
thermal conflicts based on their individual thermal comfort curve. The optimal set-point temperature was generated by 
calculating the overall thermal dissatisfied index, and was compared with the performance of common industry HVAC 
set point. 

 

Figure 1: Research methodology workflow
 
3.2 Overall Thermal Dissatisfied (OTD) index 
In order to solve the thermal comfort problem for multi-occupancy condition, the Overall Thermal Dissatisfied (OTD) 
index was developed. F(t) is the function to calculate the OTD index, which can indicate overall thermal uncomfortable 
condition of the multi-occupant condition. The lowest value of the F(t) is the optimal condition, and the corresponding 
value t should be adopted as setpoint of HVAC system.
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The benefit of this OTD index evaluation method can minimum the total number of occupants who feel uncomfortable. 
By finding the lowest value of OTD index, the optimal environment condition can be found.
 
3.3 Experiment design
3.3.1 Climate chamber setting
The human thermal comfort experiment was conducted in the B11 climate chamber (Fig.2), which located in the USC 
Watt Hall at the University of Southern California. B11 climate chamber provide a heat-balance environment and 
carefully controlled with lab AC system connected with LabVIEW. The air-speed in the chamber was controlled within 
0.2 m/s according to the ASHRAE-55 standard. The CO2 density was controlled around 700 ~ 900 ppm during the 
experiment. The amount of radiant heat transferred from a surface can be ignored since there is no window in the 
chamber and it’s located in the basement. In the center of the chamber, a chair and a desk were placed in order to 
provide a working condition for subjects. The metabolic rate of the subjects was 1.0 as seated in the office condition. 
The environmental temperature and relative humidity was measured by tripod sensor package at 1.1m level. All the data 
were recorded per 10 seconds, and automatically transported into LabVIEW database. For this study, the environmental 
condition is the climate chamber setting, which is more stable and less variable than actual working space. Only the 
air temperature is considered as environmental factor that will influence the thermal comfort. Others factors such as 
relative humidity, mean radiant temperature (MRT), clothing index, air speed and etc. can be ignored because of the 
strictly controlled environmental condition in climate chamber. 
 

Figure 2: Fisheye photo of chamber setting
 
3.3.2 Physiological measurement
There are 13 subjects attended the experiments. Subjects’ individual information including body mass index (BMI) 
and gender were recorded by the survey form. The real-time heart rate, surrounding environment temperature, and 
surrounding environment relative humidity were collected by wireless Heart Rate sensor, temperature, and relative 
humidity sensors. The data were automatically transmitted to the DAQ system with the LabVIEW software.
 
3.3.3 Procedure
The experiment lasted around 65 minutes, and environmental temperature was gradually increasing from 18 ºC to 30 ºC 
(Fig.3). Before the experiment start, there is 15 minutes adjusting time for subjects prepare and get used to the chamber 
environment. The chamber environmental temperature maintained 20 ºC during the adjusting period. Subjects filled the 
consent form and individual information form for recording BMI and gender. After 15 minutes adjusting and preparation, 
the experiment started. The environmental temperature gradually increase from 18 ºC to 30 ºC in 65 minutes.
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Figure 3: Experiment process
 
Every 5 minutes, subjects were asked the feedback of Thermal Sensation (Table 1) and Thermal comfortable condition 
(Table 2). The feedback from subjects were recorded by the survey form with corresponding experiment time. All their 
data were collected in the individual database.

Table 2: Thermal Discomfort Condition

Value Thermal Uncomfortable

0 Comfortable

1 Slightly Uncomfortable

2 Uncomfortable

3 Very Uncomfortable

3.4 Scope of the work
The scope of this research is only focus on lab setting with the strict environmental control. The purpose of this work 
is to explore the potential use of artificial intelligence in thermal comfort control. Therefore, the ideal environment 
is necessary in order to prove the theory. Based on the result of lab setting research, the application in the real world 
could be discussed. 
 
There are two precondition for the application of ANN based thermal control, one is how to collect occupant’s thermal 
comfort preference data without disturbing occupants work. It would be annoying if we do survey every 5 minutes to 
collect their feedback. Another precondition is how to identify occupant who stay in the room. Because MOC ANN-
based control is based on the individual thermal preference data, it is important to identify who stay in the room and 
their individual thermal preference
 
The above two precondition can be potentially solved by application of smart device such as smart watch and smart 
thermostat. Smart watch such as APPLE WATCH can collect user’s feedback without filling some paper survey. Smart 
watch can send the data and corresponding time to the control center. Similarly, smart thermostat can collect the real-
time environment condition and send the data to the control center. The control center use the ANN-based control 
algorithm to analysis the data and adjust the environment condition based on occupants individual thermal preference. 
The workflow is displayed in Fig.4.

 

Figure 4: Potential workflow of MOC ANN application
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4.0 DATA ANALYSIS
4.1 Database summary
There are 5 participants in the experiment. The collected data was imported from LabVIEW database and integrated 
with the subjective recorded data. Database was built based base on the experiment data (Fig.4). There are 8 attributes 
in the database including Identification information. The total record is 6660 including male record 3882 and female 
record 2778. The Heart Rate, Gender, BMI, Relative Humidity, Environmental temperature are 5 attributes (Input 
attribute) were used to training the ANN model. The label attribute (Output attribute) is Thermal comfort condition.
 

Figure 4: Database summary in Rapidminer
 
4.2 Artificial Neural Network (ANN) model development
In order to ensure that all attributes are in numerical form and on same scale, all the data from database was transfer 
from nominal type into numerical type by Nominal to Numerical operator in Rapidminer. Dummy coding type was 
used to deal with un-ordered values such as Gender and thermal comfort condition. Min-max normalization method 
(S.B. Kotsiantis 2006) was used to transform feature values into the same scale. Input preprocessed data into training 
set in the Rapidminer software and developed the ANN model (Fig. 5). 10-fold cross-validation was used to detect the 
performance of ANN model. The one of the participants ANN model performance was taken as an example (Table.3). 
The overall accuracy of the ANN model is 79.06% +/- 3.57%. The ANN model has better performance of comfortable 
prediction (88.72%) and very uncomfortable prediction (86.29%). The performance of accuracy of slightly uncomfortable 
prediction is 76.26% and the uncomfortable prediction is 69.59%. The reason of the ANN model’s better performance in 
extreme condition is the thermal comfort feeling is easier of the participants to sense extreme conditions. The sensation 
of slightly uncomfortable and uncomfortable is more difficult for people to determine, which results in larger difference 
sensation feedback record among different experiment. 

Table 3: Performance of the one of participants’ ANN model under 10-fold cross validation

Ture very 
uncomfortable

Ture 
uncomfortable

Ture slightly 
uncomfortable

Ture 
comfortable

Class 
precision

Pred. very uncomfortable 151 24 0 0 86.29%

Pred. uncomfortable 65 206 25 0 69.59%

Pred. slightly uncomfortable 5 48 257 27 76.26%

Pred. comfortable 0 0 29 228 88.72%

Class recall 68.33% 74.10% 82.64% 89.41%
Accuracy: 79.06% +/- 3.57% (mikro: 79.06%)

The accuracy of all participants ANN models (Table 4) indicate the artificial neural network had a good performance in 
prediction of human thermal comfort condition.
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Table 4: Accuracy of all participants ANN models

ANN model Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Overall Accuracy 79.06% +/- 
3.57%

79.37% +/- 
2.72%

72.82% +/-
6.95%

75.82% +/- 
5.36%

82.98% +/- 
1.98%

 

Figure 5: Artificial Neural Network model
 
4.3 Individual thermal comfort curve
Participants’ thermal comfort curve were generated by ANN model. One of the participants ANN prediction thermal 
comfort curve was taken as an example. According to the comparison between prediction curve and actual experiment 
data (Fig. 6), the ANN model has a good performance of the prediction, and can generally capture participant’s thermal 
comfort pattern. 
 

Figure 6: Comparison between ANN prediction model and experiment value
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Correspondingly, paired t-test (Table 5) were conducted to test whether there is a significant difference in the 
boundary temperature between prediction value and actual value. Boundary temperature is the minimum and maximum 
environmental temperature in a certain thermal comfort condition. For example, the comfort boundary temperature 
of above prediction sample is tmin= 22.6 ºC and tmax=25.3 ºC. The T-Test compare the boundary temperature of 
comfortable, slightly uncomfortable, uncomfortable, very uncomfortable conditions to examine the performance of ANN 
model prediction. 
 

Table 5: Paired T-Test of boundary temperature in the ANN prediction vs Experiment data

N Mean StDev Difference p-value

ANN prediction 18 23.383 3.995 0.2 0.005

Experiment data 18 23.472 3.954 0.2 0.005
 
 
The resulted p-value of paired T-Test of boundary temperature in the ANN prediction and experiment data indicates 
that there was no significant difference between the ANN model prediction and experiment data. The difference 
value of 0.2 ºC indicated that the ANN prediction has a good performance to prediction the boundary temperature of 
participant’s thermal comfort condition.
 
4.4 Optimal setpoint temperature  
All participants ANN prediction thermal comfort curved was generated (Fig. 7). Input participants’ thermal comfort 
prediction into the Overall Thermal Dissatisfied (OTD) index to determine the optimal setpoint temperature. The value 
of F(t) is 0 when the temperature is between 24.6 ºC and 25.7 ºC. The blue highlighted area (Fig. 7) is the optimal setpoint 
temperature. The calculation indicated that all occupants would be satisfied in the climate chamber setting environment 
(Relative humidity is between 30%-40%) with temperature is between 24.6 ºC and 25.7 ºC. 

 

Figure 7: All participants’ ANN thermal comfort prediction
 
The industry common designed temperature in U.S.is between 22 ºC and 24 ºC (Hoyt, Tyler et al. 2005) during the 
cooling season (see red highlighted area in Fig.7). The Overall Thermal Dissatisfied (OTD) index is from 16 ~ 121. The best 
result would be 4 occupants slightly uncomfortable and 1 occupant uncomfortable. The worst condition is 4 occupants 
uncomfortable and 1 occupant very uncomfortable. The difference of multi-occupants thermal comfort condition is 
significant between U.S. industry common designed temperature and proposed data-driven optimal setpoint. Moreover, 
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increasing the one degree setpoint temperature during the cooling season can potentially save 7~15% energy. (Hoyt, 
Tyler et al. 2005)  The optimal setpoint temperature has a significant energy saving potential while maintain the certain 
level of occupants’ thermal comfort condition. The difference setpoint temperature between data-driven optimal 
setpoint and industry common designed temperature is 0.5 ºC ~ 2.8 ºC, which indicated a potential 4%~42% energy 
saving.
 
CONCLUSION 
In this study proposed a data-driven approach for user-based thermal environmental control. The approach consist 
of the artificial neural network (ANN) model and the overall thermal dissatisfied (OTD) index. ANN model was 
used to predict occupants’ thermal comfort condition and OTD index was used to determine the optimal set point 
temperature that can minimize the overall thermal dissatisfaction. Experiment data indicated that ANN model has a 
good performance in capturing occupants’ thermal preference pattern and making the thermal comfort prediction (over 
accuracy is between 72.82% +/- 6.95% to 82.98% +/- 1.98%) based on individual features and environmental conditions. 
For this research settings including environmental setting and occupants features, data-driven approach for user-
based environmental control conducted a good performance in both energy-saving side (up to 42% energy-saving) and 
thermal comfort significant improvement. Above all, the data-driven approach revealed a great potential significance in 
smart thermal environmental control for both energy-saving and thermal comfort aspect.
 
ACKNOWLEDGEMENTS
This research was supported by Human-Building Integration Lab (HBI Lab). The authors gratefully acknowledge the 
technical support and equipment support for the human thermal experiment. The authors appreciate all experiment 
participants for their time and effort to this research. Last but not least, special thanks to Tianyu Zhao for the machine 
learning algorithm technology support. 
 

REFERENCES
 
A. Hernández, 1994. NTP 343: new criteria for future indoor ventilation standards (in Spanish. Nuevos criterios para 
futuros estándares de ventilación de interiores), Instituto Nacional de Seguridad e Higiene en el Trabajo, Ministerio de 
Trabajo y Asuntos Sociales Espa˜na, 1994
 
ASHRAE (2013). Standard 55-2013-Thermal environmental conditions for human occupancy. ASHRAE. Atlanta, USA.
 
Atilla Y. 1995, Building Energy Management A Case Study in METU Library, Master Thesis, Mechanical Engineering, 
METU, (1995), p. 1
 
Brambley, Michael R., et al. 2005. Advanced sensors and controls for building applications: Market assessment and 
potential R&D pathways. Pacific Northwest National Laboratory (2005).
 
Calvino F, Gennusca ML, Rizzo G, Scaccianoce G. 2004. The control of indoor thermal comfort conditions: introducing a 
fuzzy adaptive controller. Energy and Buildings 2004;36:97–102
 
Dounis AI, Manolakis DE. 2001. Design of a fuzzy system for living space thermal comfort regulation. Applied Energy 
2001;69:119–44
 
F. Nicol, M. Humphreys, 2002.  Adaptive thermal comfort and sustainable thermal standards for buildings, Energy and 
Buildings 34 (2002) 563–572
 
Huang S, Nelson RM. 1994. Rule development and adjustment strategies of fuzzy logic controller for an HVAC system. 
Part 1: Analysis and part two-experiment. ASHRAE Transactions 1994;1:841–56.
 
Hoyt, Tyler, Kwang Ho Lee, Hui Zhang, Edward Arens, and Tom Webster. 2005. Energy savings from extended air 
temperature setpoints and reductions in room air mixing. In International Conference on Environmental Ergonomics 
2009. 
 
Kolokotsa, D., et al. 2001. Advanced fuzzy logic controllers design and evaluation for buildings’ occupants thermal–visual 
comfort and indoor air quality satisfaction. Energy and buildings 33, no. 6 (2001): 531-543.
 
Kolokotsa. D. 2001. Design and implementation of an integrated intelligent building indoor environment management 
system using fuzzy logic, advanced decision support techniques, local operating network capabilities and smart card 
technology. PhD. Technical University of Crete; 2001



Developing Data-Driven Approach For Occupants Based On Environmental Control: Zhong/Choi/Schiler 55

Kotsiantis, S. B., D. Kanellopoulos, and P. E. Pintelas. 2006. Data preprocessing for supervised learning. International 
Journal of Computer Science 1, no. 2 (2006): 111-117.
 
Lopez L, et al., 2004. An evolutionary algorithm for the off-line data driven generation of fuzzy controllers for intelligent 
buildings. In: Systems, man and cybernetics, 2004 IEEE international conference on volume 1; 2004.p. 42–7
 
Singh J, Singh N, Sharma JK. 2006. Fuzzy modelling and control of HVAC systems—a review. Journal of Scientific and 
Industrial Research 2006;65(6):470–6
 
Vahid Vakiloroaya, et al. 2014. A review of different strategies for HVAC energy saving, Energy Convers. Manag. 77 (2014) 
738–754
 


