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ABSTRACT:  In residential and commercial buildings, programmable thermostats have been practically used to provide 
appropriate heating and cooling energy to satisfy the thermal conditions. With the help of rapid development of 
computing technology, recent controllers were able to adopt advanced algorithms such as Fuzzy Inference System 
(FIS) and Artificial Neural Network (ANN). Several studies for the algorithms were tested to improve the performance of 
conventional controllers through the large scaled databases associated with hidden interactions between parameters. 
However, most models focused on the optimization of fuel use for boilers or motor speed for fans, which have some 
disadvantages to provide sensitive control signals responding to thermal demands in zone scale level.
The advanced FIS and ANN controllers, which deal with simultaneous control of supply air mass and temperature, are 
tested to optimize supply air conditions for in-between seasons that require both moderate heating and cooling. The 
controllers are compared with a thermostat on/off model by means of the total control errors and thermal energy 
consumption. To verify the effectiveness of the controllers, the measures of Integral of Absolute Errors (IAE) and energy 
consumption results are compared with conventional thermostat on/off controller. The IAE describes the difference 
between desired and measured room temperature reflects control accuracy, and hourly thermal gain from the system 
reflects energy efficiency. The ANN mass and temperature simultaneous control algorithm indicates high efficiency 
for control errors by 5.59% and effectively mitigates energy increase by 3.95% in comparison with thermostat on/off 
controller. Even though the ANN model can effectively reduce control errors for thermal comfort, it consumes quite 
less energy than FIS model, and similar amount of energy for thermostat on/off controller. Under building’s conditions 
requiring more sensitive controls and consuming large amount of energy, the ANN controller can be used to effectively 
optimize the supply air conditions.
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INTRODUCTION
1.1. Control model
To improve the performance of building energy supply systems, the fuel amount into the boiler and fan motor speed 
was commonly adapted as major control factors. Many studies improved the mathematical thermal models to optimize 
fuel use or distribution for boiler and its turbine by using control algorithms like Proportional – Integral – Derivative 
(PID) algorithm (Rossiter, Kouvaritakis, & Dunnett, 1991; Zhuang & Atherton, 1993; Wang, Zou, Lee, & Bi, 1997; BNP media, 
2001; Tan, Liu, Fang, & Chen, 2004). The rapid development of computing technologies made many researchers improve 
the models with large amount of data and complex calculations, and the Fuzzy Inference System (FIS) and Artificial 
Neural Network (ANN) were preferred. Several studies for the algorithms were adopted to improve the performance of 
conventional controllers through the network-based approaches which can effectively deal with large scaled databases 
and parameters interactions. Some researchers developed hybrid models which combined PID and FIS models in one 
distribution network. By changing nodes and locations within distribution network, energy consumption was compared 
through the various models combining the PID and FIS models for a boiler fuel and turbine speed control or wind power 
systems, and integrated thermal control systems were developed through the comparison of the conventional control 
theory and FIS genetic algorithm (Fraisse, Virgone, & Rous, 1997; Alcala, 2003; Anderson et al, 2007; Somsai, Oonsivilai, 
Srikaew, & Kulworawanichpong; 2007). The signal control efficiency of the FIS model was developed by using multi-
dimensional genetic algorithm or matrix for HVAC control model of buildings for specific use (Zhang, Ou, & Sun, 2003; 
Fazzolari, Alcala, Nojima, Ishibuchi, & Herrera, 2013). Energy efficiency from the various scenarios for locations of FIS 
models associating with PID controller was compared to improve the performance of boiler control (Hamdi & Lachiver, 
1998; Lianzhong & Zaheeruddin, 2007; Beinarts, 2013). Also, amount of fuel for boiler or fan motor speed control models 
adopting refined FIS algorithm were tested to compare conventional PID tuning rule (Malhotra & Sodhi, 2011; Soyguder, 
Karakose, & Alli, 2009). Still others developed control models, such as damper control by combining the FIS and ANN 
models (Soyguder & Alli, 2010). Multi-layered genetic algorithm was used to improve the performance of ANN model 
which might cause overshooting or reduce level of generalization, and the control combining fan motor and damper 
angle were tested to meet thermal demands of several thermal zones using various weather data (Dounis & Caraiscos, 
2009; Dounis Koulani, Hviid, & Terkildsen, 2014; Jovanovic, Sretenovic, & Zivkovic, 2015; Ji, Xu, Duan & Lu, 2016).
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1.2. Problem statement
However, most PID and FIS models which dealt with controlling fuel amount or fan motor speed were not appropriate 
to immediate response to the thermal demand of zone scale level. Also, most control models for damper and valve were 
utilized to define time collapse to satisfy thermal demands or optimize amount of supply heating water into thermal 
zones, respectively. These approaches had some disadvantages that controllers cannot operate sensitively and promptly 
corresponding to outdoor temperature conditions.
In this research, network-based control models for supply air mass and temperature are proposed by using FIS and ANN 
algorithms.  Design strategy section describes the structures of the HVAC model, equations, and FIS and ANN algorithms 
used. Result and discussion sections indicate the advantages and disadvantages of FIS and ANN models in comparison 
with typical thermostat equipped in most buildings in the US.

Nomenclature

A area (m2) hout specific enthalpy (J/kg)

D depth of envelope 
components (m)

h convection heat transfer 
coefficient (J/m2·ºC)

min mass flow-rate into room 
(kg/h)

k transmission coefficient 
(J/m· ºC)

mout mass flow-rate out from 
room (kg/h)

r thermal resistivity (m·h·ºC 
/J)

mheater mass flow-rate of heater 
(kg/h)

R thermal resistance (h·ºC /J)

mroomair mass of room air (kg) Cv specific heat capacity at 
constant volume (J/kg·ºC)

Qloss convection and 
transmission heat loss (J)

Cp specific heat capacity at 
constant pressure (J/kg·ºC)

Qgain convection and 
transmission heat gain (J)

u internal energy (J)

Tht air temperature entered 
into room (ºC)

W work (J)

Troom room temperature (ºC) t time

Tout outdoor temperature (ºC) E error (ºC)

Tset set-point temperature (ºC) ΔE derivative of error

hin specific enthalpy (J/kg) R2 fraction of variance
 

2.0.  DESIGN STRATEGY
2.1. HVAC model
Figure 1 describes the diagrammatic flow for the HVAC model used in this research. This room is an independent module 
equipped with one heating system with a single duct. The pressure variations of indoor air speed are neglected, as well 
as air leakage between envelopes and duct systems, and also, airflows in the zone are de-stratified.

Figure 1 : Diagrammatic flow of HVAC model
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The heating system describes a heating system and its relationship to a room for thermal characteristics of a house 
and a heater, and outdoor and indoor temperature. Total thermal energy is contained within any objects is defined by 
temperature, mass, and characteristics of materials. From the thermodynamic first law, the thermal energy transfer is 
given by:

 
           (1)

where Qloss is heat transfer from room to outside and Qgain is heat transfer from heater to room. U is internal energy, and 
t is time.

From the conduction through the walls and windows, thermal energy loss of room, Qloss is given by:

 
           (2)

 
           (3)

where hout and hin are heat transfer coefficients, k is transmission coefficient, A  is area,  D is depth of envelope. From the 
mass flow rate and enthalpy, assuming that there is no work in the system, thermal energy gain of room, Qgain is given by:

           (4)

From the law of conservation of mass and the assumption of no change in the flow rate:

           (5)

From Eq. (4) and (5), Qgain is transformed:

           (6)

The rate of internal energy is given by:

           (7)

From the equations above, Eq. (8) for simulation is obtained:

 
           (8)

Based on the equations and scenarios, initial input parameters are assigned, and Table 1 summarizes the factors and 
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assigned values used in the simulation test (ASHRAE TC9.9, 2011; Steinbrecher & Schmidt, 2011; Mathworks, 2016).
 

Table 1 : Design factors and values

No. Factor Value

1 Set-point temperature (Tset) 20 ºC for Heating, 25.5 ºC for Cooling

2 Wall width x height 19.5 m x 4.4 m

3 Wall thickness (Dwall) 0.15 m

4 Wall thermal conductivity (kwall) 136.8 J/m·h·ºC

5 Window width x height 1.5 m x 1.0 m

6 Window thickness (Dwindow) 0.02 m

7 Number of windows 8

8 Window thermal conductivity (kwindow) 2,808.0 J/m·h·ºC

9 Mass flow rate into room 3,600 kg/h

10 Weather data Incheon Int’l Airport in South Korea

2.2. Thermostat on/off model
The thermostat on/off controller operates within the dead-band setup. If the difference between Tset and Troom is 
larger than a specified value, the control model sends the run or stop signal to the heater. As a reference to compare 
to other control models, the initial values of deadband are +1ºC and -1ºC. For instance, Tset and Troom are 20ºC and 18ºC, 
respectively, wherein the heater turns on and starts to supply hot air into room because the difference is 2ºC.
 
2.3. Fuzzy Inference System (FIS) model
The purpose of the FIS models used in the three cases is to determine the optimal values of the mass and the 
temperature of the supply heating air, which depends on the difference between the Tset and Troom. Figure 2 shows the FIS 
membership rule with two input variables: wherein the temperature differences between Tset and Troom (E) are derivative 
of the T difference (ΔE). 
 

Figure 2 : FIS membership graphs for mass and temperature control signals

In this research, the new method uses five membership functions for each input variable with universal of discourse 0 to 
0.5 and -10 to 10; respectively, Negative Big (NB), Negative Small (NS), Zero (ZO), Positive Small (PS), and Positive Big (PB). 
The method also uses an output of control signal of 0 (0% output) to 1 (100% output).
 
2.4. Artificial Neural Network (ANN) model
The ANN consists of a large class of several structures, and the appropriate selections of a nonlinear mapping function 
with a network are required (Politechnika Wroclawska, 2016). Figure 3 indicates diagram for typical multiple nodes 
within the neural network function (Politechnika Wroclawska, 2016). The function in the network used in this research 
consists of two input layers, 10 hidden layers, and an output layer.
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Figure 3 : Structure of ANN node

The inputs of x1,…xk to the neuron are multiplied by weights and summed up with the constant bias. The resulting is the 
input to the activation function. Then, results from activation function were summed up goes to output yk. The ANN 
models in this research are performed through the two inputs: Error (E) is temperature difference between Tset and Troom, 
and ΔE is derivative of the error. Table 2 describes the configuration used for ANN simulation in this research.
 

Table 2: ANN configuration

No. Configuration

1 # of training set 60,480

2 # of testing and validating sets 25,920

3 # of hidden layers 10

4 Algorithm Scaled conjugated gradient

5 Max # of iterations in 1 Epoch 1,000

 
2.5. Simulation model
By using the assumptions and design strategy, one reference model and two controllers are tested. The reference model 
is a typical thermostat on/off controller. By using fuzzy logic, the FIS controls for mass and temperature simultaneously 
are tested. Also, the results from the FIS are trained by the ANN regression fitting model, which generates the ANN 
controller. Figure 4 describes the diagrammatic structure of the MATLAB simulation model. In the case of the FIS and 
ANN models, when the difference between the lower limit temperature of cooling Tset setting and the upper limit of 
heating Tset is +1 ° C, a switch for automatically limiting the supply is activated like the thermostat on/off model.
 

Figure 4: Diagrammatic structure of simulation model
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RESULT AND DISCUSSION
Table 3 shows the performance of ANN fitting model trained by inputs of E and ΔE, and a target of FIS output signals to 
respond to changes in Tout. As indicated in the R² values for training and validating, the regression of ANN for mass and 
temperature controls is significant.

Table 3: ANN fitting results and regressions

No. Results Mass Control Temp Control

1 # of iterations (maximum 1000) 138 587

2 Gradient 0.001 0.214

3 Validation checks 6 6

4 R² of training set 0.9954 0.9975

5 R² of validating set 0.9951 0.9975

6 R² of testing set 0.9951 0.9974

7 R² of all data set 0.9953 0.9975
 

Figure 5 describes the results of three control strategies. From 10:00 to 14:00 and from 19:00 to 24:00, the Tout is in 
between the upper and lower dead-bands of Tset. This confirms the fact that Troom follows Tout with time delays because 
the controller stops at the time range.
 

Figure 5: Tout vs. Troom by three controllers

Temperature controlled by FIS and ANN show similar trajectories as compared to thermostat on/off controller. The 
FIS controller reduces overshoot which can be seen in thermostat on/off controls, but it is confirmed that the ANN 
controller reduces more than the level of FIS. Simultaneous control of mass and temperature by ANN shows the highest 
performance in terms of control accuracy for Troom.

Tables 4 and 5 show the results of Integral of Absolute Error (IAE: sum of absolute errors derived from the difference 
between Tset and Troom) and energy consumption as Energy Use Intensity (EUI: kWh/m2∙year) for heating air supply 
derived from the simulations of three design strategies. The ANN controller through the simultaneous control of 
mass and temperature shows higher control efficiency than other two controllers. This result can be derived from the 
effective reduction of overshoot at the time when the controllers turn on from 02:00 to 07:00 and from 14:00 to 19:00.
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Table 4: Comparisons of IAE

Controller IAE Comparison

Cooling Heating Total

Thermostat On/Off 81.45 62.55 144.00 -

FIS 80.02 61.50 141.52 -1.72%

ANN 77.96 57.99 135.95 -5.59%
 

In the U.S. market, typical thermostat controllers are operated in the deadband set up of ±2ºF (about 1.1ºC). The result 
describes the fact that most FIS and ANN models can improve control efficiency as compared to typical thermostat on/
off controller equipped in U.S. buildings. However, as indicated in Figure 5, the ANN controller supplies unnecessary 
heating energy from 09:00 to 10:30, and cooling energy from 19:00 to 20:00 to maintain Troom inside Tset. This can be 
one of the reasons why energy consumption is increasing. Table 5 summarizes the energy consumption level as EUI for 
three different controllers.

As indicated in Table 5, thermostat on/off controller shows higher efficiency in energy consumption as compared to the 
FIS and ANN controllers. This is directly related to the control sensitivity to maintain a desired Troom, which may increase 
energy consumption during heater and cooler turned on. In spite of the probable deficiencies, the ANN model shows 
higher efficiency rather than the FIS controller by about 60%, and also, it effectively mitigates energy consumption 
increase by 3.95% as compared to thermostat on/off controller. If the algorithm in the ANN is improved to rectify 
unnecessary signals from 02:00 to 07:00 and from 14:00 to 19:00, the energy efficiency can be improved rather than the 
result. This can be considered as one of follow-up studies. As indicated in Tables 4 and 5, the FIS model shows a much 
larger increase in energy consumption in comparison with the improvement of control efficiency. This implies a fact 
that the algorithm of the fuzzy membership function uses unnecessary energy to sensitively maintain Troom, and more 
precise configuration for membership function is required.
 

Table 5: Comparisons of energy consumption

Controller Energy Use Intensity (kWh/m2∙year) Comparison

Cooling Heating Total

Thermostat On/Off 29.04 22.85 51.89 -

FIS 39.69 43.62 81.31 +60.57%

ANN 28.79 25.14 53.93 +3.95%

In brief, thermostat on/off controller is still effective in terms of energy consumption only. However, it makes 
inconsistent Troom which directly related to thermal dissatisfaction for occupants. The ANN simultaneous mass and 
temperature controller can effectively maintain desired Troom by minimizing control errors, and also, it just consumes 
energy 3.95% more than thermostat on/off controller. Regarding the result, the ANN simultaneous controller can 
be used for some rooms or buildings with specific use such as hospitals and laboratories requiring huge energy and 
sensitive Troom control.

In order to implement this ANN model to actual buildings, it needs to be considered that each control signal is 
converted into physical signals. The mass signals from the ANN are used to adjust fan motor speed in a heater and an 
air conditioner, or to change damper angle in ducts or diffusers. The temperature signals from the ANN are used to 
control temperature controllers of a heater and an air conditioner, or to operate resistance coils in ducts or diffusers. 
Therefore, a comprehensive simulation or experimental analysis for total energy costs including electricity used to drive 
the devices will be performed as a follow-up study.
 
CONCLUSION
In this research, neural network controller for heating and cooling supply air was introduced with simultaneous control 
of the amount of supply air and its temperature in-between season. In order to verify the effectiveness of the advanced 
controller, thermostat on/off and FIS controllers are tested, and the measures of IAE and heat and cooling gains a day 
were used.

The result concludes advantages of the ANN controller which effectively optimizes the supply air conditions to reduce 
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control errors by 5.59% and mitigate energy consumption increase by 3.95%, respectively. Under conditions requiring 
more sensitive control and consuming large amount of energy such as hospitals and laboratories, the ANN controller 
can be used to effectively optimize the supply air condition as it relates to workability and productivity. Despite its 
sensitive and accurate control, the ANN controller maintains an energy consumption level as low as a conventional 
thermostat on/off controller. Another advantage is that the model can also be used for other colder or hotter areas 
without any major changes or modifications because working properly at low temperature below Tset and higher 
temperature above Tset was confirmed.
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