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ABSTRACT: The goal of this paper is to investigate and determine the significant impact of building facade information 
(i.e., basic façade features), as well as climatic impact, on building energy performance. Compared with these easily 
accessible façade features, parameters including envelope thermal properties, internal systems, and operating schedules 
are regulated by building codes and regulations, based on different building functionalities. Such façade parameters 
are variables that have large potential for affecting building energy performance. These attributes were extracted to 
conduct a data mining process to establish a correlation between building energy consumption and relevant physics 
information. Stepwise regression, and artificial neural network (ANN) are techniques used in this research. A façade 
visual information-driven benchmark model was developed as a building energy use intensity estimation baseline. 
Considering its comprehensive interpretation of variable variance and better predictive ability, it was proved that it 
is capable and feasible to use the façade visual information as the building key performance indicator, for estimating 
the building energy use, which is a fast and straightforward way to predict the energy use at urban scale. Traditional 
energy predictions, as a very complicated and time-consuming process, require multiple details and information about 
a building when preparing for energy modeling. Incorporating a transformative building energy performance estimation 
approach may enable stakeholders to easily assess their existing building energy consumption as well as establish a 
viable integrated energy master plan.
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INTRODUCTION 
As urban built environment is the largest contribution to world’s fossil fuel consumption and greenhouse gas emissions, 
it is imperative to transform the irreversible climate change problems into solutions through the built environment, 
in paving to a carbon neutral future. In California, with the aim of minimizing the fossil fuel energy consumption, 
California Public Utilities Commission (CPUC) established the tangible goals that all new residential construction in 
California shall be zero net energy (ZNE) by 2020, and all new commercial construction shall be ZNE by 2030. Per the 
ZNE Action Plan, K-12 schools and community colleges are prior than other types of building at this stage to implement 
the ZNE retrofit. To make this change possible, major efforts shall go beyond individual buildings to urban planning by 
modelling the campus energy performance as well as proposing the energy use metrics for energy goals. It is concerned 
with the measurement and benchmarking of the whole building energy consumption. However, due to the complexity 
of the energy consumption structure, it is quite difficult to estimate the energy consumption precisely. In spite of the 
prevalent use of advanced building simulation, it is not mature for urban scale energy analysis. The critical limitations of 
existing simulation tools are the excessive amounts of building information required and the time-consuming process. 
The lack of sufficient building information will significantly restrict the utilization of a computational performance 
diagnostic method, hinder the effective management of energy in old or existing facilities. Therefore, under this 
situation, there is a high potential in developing a fast and straightforward energy estimation approach, which facilitates 
the energy management at the urban scale.
 
Building energy consumption is influenced by multiple variables including building envelope information, local climate 
characteristics, building principal activities and internal energy systems. Among these influential variables, building 
envelope, as the elegant component that helps shape the architectural aesthetics of the building, is a crucial factor 
in determining the energy performance (McFarquhar, 2002). In addition, façade features are more easily obtained as 
opposed to obtaining the detailed building system information. The goal of this research is to provide stakeholders 
with a simplified but reliable energy benchmark model to assess their existing building performance while motivating 
the establishment of performance goals. To accomplish this goal, the façade visual information-driven benchmark 
performance model as a function of architectural physical frames, facades, and their dynamic climate conditions was 
developed to facilitate energy management of a whole building or urban scale to provide a scalable and extensible tool. 
 
1.0  BACKGROUND AND CONTEXT
The AEC industry has stepped into the prime time, revolutionizing from traditional construction to sustainable designed 
with concerns for high-efficiency and high cost-effectiveness. In the long term, measuring the energy performance at a 
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community or city scale do contribute in achieving the urban sustainability targets.
 
1.1  Building energy use baseline and benchmarking
Creating the baseline for current energy consumption will assist both the stakeholders and the design team in 
evaluating the energy performance as well as understanding the energy expenditures associated with the building 
operation costs. It is the starting point for setting the energy efficiency improvement goals as well as providing a 
comparison point for assessing future efforts and trending overall performance. For instance, the 2030 Challenge 
established by Architecture 2030 uses the national average or median energy consumption of existing U.S. commercial 
buildings reported by the 2012 Commercial Building Energy Consumption Survey (CBECS) as its baseline for the target 
goals (Architecture 2030, 2015). 
 
Building energy benchmarking is an approach to evaluate the building performance and establish the comprehensive 
energy reduction goal, which has already become a standard process across the nonresidential building markets. There 
are a wide variety of benchmarking tools for building energy performance. The Building Performance Database is the 
national largest dataset for users to perform the statistical comparison in both commercial and residential buildings 
across the national real estate sectors (U.S. Department of Energy, 2016). In addition, Energy Star Portfolio Manager is 
an interactive online energy management tool tracking energy consumption across the life cycle of the building. It is a 
well-established whole building benchmarking tool in the U.S (Borgstein & Lamberts, 2014). Energy use intensity (EUI) is 
the key metric used for energy consumption baseline. It is the building energy use as the function of the building size, 
normally square footage, with the unit in kWh/m²yr (kBtu/sf.yr). Buildings with different internal principal activities 
have different EUIs, for example, hospitals have relatively higher EUI since there are large amounts of testing and 
inspection instruments, which consume higher electricity loads. There are different ways to predict the building EUI 
with different levels of accuracy. Estimating and modeling the building EUI precisely, especially in the community or 
urban level, is an essential process for future energy benchmarking and urban energy infrastructure planning. 
 
1.2  Building energy performance estimation approach
There are three mainstream approaches to estimate the building EUI: national benchmarking tool, energy modeling 
software, and energy bill based analysis. The national or local average or median energy consumption is one approach 
to estimate the building EUI. Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey 
compiled by the U.S. Department of Energy, which collects the information on the stock of U.S. commercial buildings 
(U.S. Energy Information Administration, 2016). It includes the basic energy-related building characteristics as well 
as the building energy consumption and expenditures. CBECS provides the average EUI for buildings in geographic 
regions based on climate zone, building size, floor space and building principal activity. The benchmarks were 
developed by multivariable regression to compare buildings of different typologies, based on various characteristics 
(U.S. Environmental Protection Agency, 2010). It is a simple normalization which is inexpensive and easy to implement, 
however, it only concerns with limited building factors, which cannot normalize for the thorough building physical 
characteristics which may affect the building energy consumption (Borgsteina & Lamberts, 2014).
 
Other ways include the computer-aid energy modeling software. There are various simulation programs in the industry 
that are well developed for modeling the building energy consumption, for example, EnergyPlus, DesignBuilder, IES-
VE, eQuest, EnergyPro, etc. With inputs of detailed building information such as building envelope assemblies’ thermal 
properties and building systems’ efficiency, the energy program will calculate the energy usage and analyze the end-
use consumption. It is powerful for designers to evaluate potential savings of different design schemes or sustainable 
strategies at the predesign stage. However, the accuracy of the energy modeling depends on how much specific 
information related to envelope thermal properties, internal system performance and operation schedule, can be input 
to the model, as well as the similarity between the real design and the 3D model built up inside the modeling module. It 
is almost impossible to obtain all the detailed and accurate building information, especially for those old buildings built 
decades before, since some parameters may be unavailable to many organizations, for example, the detailed information 
of internal individual rooms (Zhao & Magoulès, 2012). For the large urban scale energy analysis, it is extremely time-
consuming and cost-ineffective to perform the energy simulation building by building. The expertise level of the 
building energy analyst may also affect the accuracy of the modeling results. Daly and colleagues clearly state that 
“building energy modeling typically relies on a range of simulation assumptions and default values for certain ‘hard-to-
measure’ building and behavioral inputs to building performance simulations”. In addition, different simulation programs 
may result in different energy consumption, even with the same settings, since it varies with different algorithms in 
the modeling engine. Grawley, Hand and their research team (2008) conducted a comparison and contrast study on 
capabilities of different building energy performance simulation programs. Similarly, Sun (2015) conducted a result 
variation analysis of different simulation programs. In his research, 11 case buildings were selected to run the energy 
modeling by using several different prevalent software, see Figure 1. It is clearly that there are large discrepancies among 
different simulation program. The modeling capabilities and detail level vary with different software even if they share 
the same energy modeling algorithm. There is a need to further develop a simple, robust and validated model for energy 
prediction.
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Figure 1: Comparison of predicted EUI from seven programs of one building (Source: Sun, 2015)
 
For energy prediction of existing facilities, the energy-bill based method is the most precise one as well as the most 
cost-effective. However, the monthly bills only provide the total energy usage of the whole building, thus it could not 
help with the multi-level assessment and diagnosis. In fact, at the urban level, it is sometimes not feasible to collect the 
12-month of energy bills for all buildings. Compared with the energy bill, building sub-metering system is an approach 
to monitor the real-time energy consumption. However, it is not practically applied in the real industry due to the high 
initial investment (Piette et al, 2001). Therefore, under this situation, there is a high potential in developing a fast and 
accurate energy estimation approach, which facilitates the energy management at the urban scale.
 
1.3  Urban scale modeling approach
There are numerous researches on the urban energy models, focusing on data, algorithms, workflow and potential 
applications on city-wide energy supply/demand strategies, urban development planning, electrical grid stability and 
urban resilience (ASHRAE 2017 Winter Conference). There are several urban energy modeling tools that have been 
developed or at on-going research stage. Hong and his colleagues (2016) from Lawrence Berkeley National Laboratory 
proposed a web-based data and computing platform to facilitate the urban scale energy efficient planning. City Building 
Energy Saver (CityBES) is a web-based platform for urban scale energy performance modeling of a city’s building stock. 
It employs EnergyPlus as the simulation engine for investigating the building energy use and potential savings under 
various energy efficient strategies. CityGML, as an XML-based open data model, was used to represent and exchange 
the 3D city models, and provide virtual 3D city models for advanced analysis and visualization. The MIT Sustainable 
Design Lab is currently developing a new generation of urban building energy models (UBEM), for estimating the 
citywide hourly energy demand loads down to the individual building level (MIT Sustainable Design Lab, 2017). Urban 
Modeling Interface (UMI) is a Rhinoceros 3D software-based tool for urban level modeling including the operational and 
embodied energy use, daylighting and walkability analysis (Reinhart et al., 2013). It used the EnergyPlus and Radiance as 
the simulation engine. It works as the plug-in for the commercial 3D computer graphics and CAD modeling software. 
CitySim is a new software developed by Robinson and his research team in 2009, providing the decision support for 
urban planner on energy and emission reduction. It was developed based on its own XML schema to represent the 
building information. And the developers plan to incorporate water, transportation, and urban climate modeling into 
CitySim in the future (Robinson et al., 2009). However, at this stage, this software is isolated for specific applications, 
since they are not using the open standards, such as CityGML (Hong et al., 2016). 
 
2.0  METHODOLOGY  
In this research, a data-driven performance benchmark model based on building visual façade information was 
proposed. It aims to provide a direct and real-time forecast of the existing building energy performance, especially for 
urban scale energy analysis and benchmarking, as well as to provide a fast and straightforward tool for evaluating the 
building envelope design decision at the project predesign and schematic design stage. 

To accomplish this goal, a data-driven benchmark performance model as a function of facades, and dynamic climate 
conditions was developed upon the following research methodology diagram, see Figure 2. There are three main parts of 
methodology in this research: data collection, data mining and validation. Finally, the building performance benchmark 
model used to predict energy consumption were derived based on building visual façade information, basic climatic 
characteristics and building monthly energy consumption. The following sections gave an explicit methodology for this 
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research and documents the overall workflow.

	

Figure 2: Methodology Workflow Diagram
 
2.1  Data collection
Research dataset of 32 different buildings were collected from two California colleges in different climate zones. The 
dataset includes the real building energy consumption data, building façade features information, climate and weather 
data, and building vintage. The building energy consumption dataset were collected for each building including the 
yearly and monthly end use consumption in heating, cooling, fan/pump, lighting and miscellaneous plugins and the total 
building site EUI. Instead of using the detailed building information including construction assembly thermal properties, 
internal system performance, operation schedule, only accessible façade features such as height, floor area, WWR and 
basic climate characteristics were considered. 
	
Table 1: Façade and Climate Parameters

 		
 
Building vintage was used to indicate the minimum requirements on building envelope and internal systems. Climate 
feature is one of the most significant factors in influencing the building energy performance. HDD and CDD are 
commonly used in calculations relating to the energy consumption for heating and cooling the building. Other climate 
factors including dry-bulb temperature, diurnal temperature and relative humidity were taken into consideration since 
they are important factors for establishing the indoor thermal comfort. Annual and monthly heating degree day and 
cooling degree day were collected from Degree Days.net, which is an online open source for worldwide weather data. 
Other weather data shown in the table were collected from the nearest weather stations from the online open source 
Weatherbase.com. Table 2 shows a sample dataset demonstrating the data organization of building monthly EUI and 
different attributes associated with façade and climate factors. All 32 groups of buildings data were organized in this 
format for future data mining. 
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Table 2: Sample Data Organization

*Building long axis along with North to South is marked as 1, NE-SW is 2, E-W is 3, SE-NW is 4
 
2.2  Data mining and validation
Until now, there are numerous researches on data-driven building energy prediction model. Possible techniques include 
principal component analysis, multivariable regression, decision tree and artificial neural network (ANN). 
 
Ruch and colleagues (1993) developed a data-driven method for estimating the daily electricity consumption in a 
commercial building by utilizing the principal component analysis to minimize the collinearity of the performance 
parameters and hence derive a more stable regression equation. Kalogirou et al (1997) applied the back propagation 
neural networks for estimating the heating load of buildings. In 2000, they conducted a research on application of 
artificial neural network on energy consumption prediction for passive solar buildings without mechanical systems 
for heating or cooling. Later, Ma et al (2010) derived a monthly energy consumption prediction model for large scale 
public buildings by integrating multiple linear regression. Yu, Haghighat and their research colleagues (2016) proposed a 
decision tree method for building energy demand estimation, which is a flowchart-like tree structure segregating a set 
of data into various predefined classes. 

Figure 3: Possible Data Mining Techniques
 
In this research, two main data mining techniques were used including multivariable regression and artificial neural 
network to compare the result and accuracy, see Figure 3. Minitab and WEKA are two data mining tools used for 
multivariable regression and ANN separately. Minitab is a statistics package developed by the Pennsylvania State 
University. It contains a complete set of statistical tools including descriptive statistics, hypothesis tests, confidence 
intervals and normality tests, and could help uncover the internal relationships between variables and identify the 
important factors affecting the quality of the products and services (Minitab, 2016). WEKA is a collection of machine 
learning algorithms for data mining tasks. It can either be applied directly to a dataset or called from user’s own Java 
code. It is a workbench contains a collection of visualization tools and algorithms and graphical user interfaces for data 
pre-processing, classification, regression, clustering, association rules. (WEKA The University of Waikato, 2016). 
 
As an extension of simple linear regression, multivariable regression is a technique that estimates the relationship 
between several independent or predictor variables and a dependent or criterion variable (StatSoft, 2016). It is used to 
predict the value of a variable based on the value of two or more other variables. Stepwise regression is a dimension 
reduction measure to screen out the best combination of the predictor variables (façade & climate attributes) for 
predicting the dependent variable (EUI). Minitab stepwise regression feature can automatically outputs the most 
significant attributes by adding the most significant variable or removing the least significant variable during each 
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regression steps (Minitab 17 Support, 2017). In machine learning and cognitive science, an artificial neural network 
(ANN) is a network inspired by biological neural networks which is the central nervous systems of animals, in particular, 
the brain. Artificial neural network is commonly used to estimate or approximate functions that can depend on a large 
number of inputs that are generally unknown. 
 
3.0  RESULT AND DISCUSSION 
The 32-building dataset with 23 façade and climate attributes were firstly analyzed in Minitab for stepwise regression. 
Table 3 and Table 4 summarize the result and corresponding regression coefficient of the stepwise regression. 
According to the Minitab stepwise regression, HDD, dry-bulb temperature, south WWR, RH and façade area are five 
significant independents selected for the regression model to predict the site building EUI. 
 
Table 3: Minitab’s Stepwise Regression Output & Coefficient Summary

	
 
Minitab’s stepwise regression can automatically output the most significant models. A good prediction model should 
have a small S value, a high R2, adjusted R2 and predicted R2 as well as a relatively small Mallows’ Cp close to the 
number of the predictors. As can be seen from Table 3, the HDD has the largest R2 of 68.27%, which means it is the most 
dominant attribute for predicting the building site EUI. The S value of 5.48 shows the average distance the observed 
value fall from the regression line. The final model was highlighted in red with the R2 of 79.49%, representing the overall 
accountability. The output shows HDD, Dry-Bulb Temperature, South WWR, RH and Façade Area are five key attributes 
predicting building EUI. Normally, the attribute with the accountability (R2) less than 1 can be neglected. The standard 
error coefficient (SE Coeff) of the RH is the lowest, which means the model is capable of predicting the coefficient for 
RH with greater precision. VIF refers to the variance inflation factor for describing the multicollinearity, the larger the 
multicollinearity, the higher variance of the regression coefficient. With the lower VIF, the less correlation between each 
predictor. The VIF shown in Table 4 is low as no more than 2, which means a relatively stable prediction model. 
However, the stepwise regression performed in Minitab shows a basic linear correlation between the building site EUI 
and corresponding building facade visual information and climatic factors. Artificial neural network (ANN) was also used 
to conduct the data mining for the original dataset and compare with the Minitab regression result for accuracy.
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Figure 5: WEKA’s ANN Output Interface & Output Summary
 
The algorithm of the ANN used in WEKA is the multilayer perceptron, which uses the backpropagation for classification. 
The dataset was divided into a large portion of training dataset for creating ANN and the remaining small portion of 
testing dataset for validating the accuracy. Figure 5 shows the interface of artificial neural network processed in WEKA 
data mining software. 
	
Table 4: WEKA’s ANN Output Summary	

	
It can be seen that the correlation coefficient is 0.9939, which implies 99.39% of the attributes in the dataset have been 
explained by the model. It can be considered as a perfectly correlated set of predictions. The relative absolute error 
shows the accuracy of the predicted model, which is within the common acceptable accuracy of 70% in the data mining 
field (Manaf et al., 2011). 
 
Due to the limitations of time and resource accessibility, several research limitations, that may cause inaccuracy or error 
in the outcome, were addressed in this section. Limitations were mainly countered with the data collection process 
including the insufficient research database and inaccurate data inputs. The research database includes 32 buildings’ 
energy consumption data, which may not be enough to establish a robust data-driven energy prediction model. Besides, 
all the buildings are education facilities, thus the variety of the building type is very limited, while more than half are 
classrooms with similar geometry. In this case, the model might be limited to a specified group of buildings and may not 
be applicable to other building types. In addition to building EUIs, most façade features were collected from building 3D 
models and some of them may require manual reading and estimate due to information inaccessibility. It is sometimes 
not accurate due to the subjective and cognitive influence. Building monthly EUIs were obtained based on the energy 
modeling program, weather files (epw.) were imported for simulation. However, climate data considered in this research 
were collected from the online open source, they might be inconsistent with the weather input to the energy modeling 
program. This may also contribute to inaccuracy of the predicted model. 
	
4.0  CONCLUSION AND RECOMMENDATION
With more and more attention on urban sustainability, the large-scale building energy master plan with the 
comprehensive energy reduction strategies are essential today in meeting the energy reduction goal. To facilitate the 
building energy performance estimation process at the urban level, the façade visual information-driven benchmark 
performance model was introduced as a transformative approach to estimate energy performance. It is a fast and 
more accurate way to predict the energy use intensity in the schematic design stage and it will facilitate the energy 
consumption analysis of multiple buildings in the urban scale to establish the comprehensive energy master plan as well 
as establishing the EUI metrics and helping propose the feasible energy management strategy plans. For this paper, due 
to the limited time and sources, 32 buildings were analyzed at this stage. The research will be continuing all along with 
more groups of buildings for the data mining to develop a more robust benchmark performance model. 
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