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Abstract 

 
Many parts of the building envelopes contain enclosed airspaces.  The thermal resistance (R-value) 

of an enclosed airspace depends on the emissivity of all surfaces that bound the airspace, the size and 
orientation of the airspace, the direction of heat transfer through the airspace, and the respective 
temperatures of all surfaces that define the airspace.  Assessing the energy performance of building 
envelopes requires accurate determination of the R-values of enclosed airspaces. In this paper, a 
comprehensive review about the thermal performance of enclosed airspaces is conducted.  This review 
includes the computational and experimental methods for determining the effective R-value of enclosed 
reflective airspaces.  Also, the different parameters that affect the thermal performance of enclosed 
airspaces are discussed.  Finally, practical correlation for determining the R-values of enclosed airspaces 
of different inclination angels and directions of heat flow as a function of all parameters that affect the 
thermal performance of the enclosed airspaces, namely: average temperature, temperature differential, 
aspect ratio, and effective emittance is provided.  This correlation can be used by modellers, building 
designers and architects in the design for thermal resistance of building enclosures.  As well, this 
correlation can be implemented in the currently available energy simulation models (e.g. ESP-r, Energy 
Plus, DOE, etc.).  

 
Keywords: Reflective insulation, low emissivity material, thermal modelling, R-value correlation, airflow 
in enclosed airspace, and heat transfer by convection, conduction & radiation. 
 
Introduction 

 
In regions with harsh climatic conditions, a substantial share of energy is used for heating and 

cooling the buildings [1].  Energy consumption of the building sector is high and although the situation 
differs from country to country, buildings are responsible for about 30-40% of the total energy demand 
[2].  In Europe, however, buildings are responsible for 40-50% of energy use and the largest share of 
energy in buildings is used for heating [3].  The design of building enclosures with the intent of achieving 
energy savings can necessarily help reduce building operating loads and thus the demand for energy 
over time [4, 5].  Thermal insulations are major contributors and obviously a practical and logical first 
step towards achieving energy efficiency especially in buildings located in sites with harsh climatic 
conditions.  This can evidently be achieved by increasing the effective thermal resistance (R-value) of the 
building envelope.   

* Invited paper for Building Enclosure Science & Technology Conference (BEST4) conference.  This paper is 
prepared for publication in the Journal of Building Physics and will also be placed in the BEST 4 proceeding in its 
pre-print version. 
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Reflective Insulation (RI) products are typically being used in conjunction with mass insulation 
products, such as glass fibre, expanded polystyrene foam (EPS), and other similar insulation products.  
The RI products were introduced onto the building market as a promising thermal insulation material.  
According to the installation guidelines of the Reflective Insulation Manufacturers Association 
International (RIMA-I) [6], RI products have at least one reflective surface facing an airspace.  The RI 
products can be installed in wall cavities, between ceiling and floor joists, and in metallic buildings that 
cannot readily accommodate loose-fill or batt-type insulations.  Also, RI products can be used as part of 
a roofing system either below the decking between rafters, within small air gaps between decking and 
roofing, and in air gaps created, for example, by paneling interior masonry walls [7].   

 
A review about the use of reflective materials to reduce heat transfer by radiation across enclosed 

airspaces was conducted by Gross and Miller [8].  Fricker and Yarbrough [9] conducted literature review 
on four computational methods for evaluating the R-values of enclosed reflective airspaces. Those four 
methods involved an assumption of one-dimensional heat transfer between large parallel surfaces 
(infinite parallel planes).  In an actual building enclosure, however, there are surfaces connecting the 
parallel planes (e.g. framing). These surfaces absorb, emit and reflect thermal radiation.  Glicksman [10] 
has shown that the heat transfer process that included radiation interaction between the parallel 
surfaces and the framing resulted in a decrease in the overall thermal performance (i.e. lower R-values).   

 
It is important to accurately determine the effective R-values of the airspaces of different 

dimensions, effective emittances, inclination angles, directions of heat flow, mean airspace 
temperatures, and temperature differences across the airspaces.  Many studies were conducted to 
determine the R-values of RI products, and wall and roofing systems incorporating RI products [2-3, 7, 
11-31].  Also, there are many claims indicating that RI products can have high thermal resistance.  
Debate is still ongoing into whether these claims are correct [26].  However, some in situ measurements, 
and hot box and hot plate measurements performed in laboratories resulted in lower R-values.  For 
example, Saber [22] and Saber et al. [23] showed that a heat flow meter in accordance with standard 
ASTM C-518 [33] underestimates the effective R-value of RI products that include radiation shields in 
combination with horizontal enclosed airspaces. The main reason lies in non-uniform convective flows in 
these airspaces.  As such, Tenpierik and Hasselaar [26] conducted an extensive literature review to 
identify the causes for the different results among different research organizations.  D’Orazio et al. [20] 
conducted field study under hot climatic conditions to investigate the thermal performance of an 
insulated roof with RI product.  The results of that study showed that the benefits of RI product are 
quite limited when using the insulation level imposed by actual laws, which consider insulation as the 
main strategy for energy saving in temperate and hot climates.   

 
This paper focuses on the thermal performance of enclosed airspaces under different operation 

conditions.  Note that the term “enclosed” is critical since the major distinction between RIs and Radiant 
Barriers (RBs) is the airspace condition, where the RB system is defined as a building construction that 
consists of a low emittance surface bounded by an “open” airspace [1, 11, 13, 15].  The parameters that 
affect the R-value of an enclosed airspace are: (a) the physical properties of the air filling the space, (b) 
temperature of all surfaces of the airspace, (c) emissivity of all surfaces of the airspace, (d) temperature 
differences across the airspace, (e) dimensions of the airspace, (f) direction of heat flow through the 
airspace, and (g) orientation of the airspace.  The R-values of enclosed airspaces were calculated by 
many investigators (e.g. see Robinson et al. [34, 35, 36] for various orientations of airspaces and 
reflective boundaries by using heat transfer coefficient data).  The heat transfer coefficient data were 
obtained from measurements of panels of different thicknesses using the test method described in the 
ASTM C236-53 [37].  In those studies, the steady-state heat transmission rates were corrected for heat 
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transfer occurring along parallel paths between hot and cold boundaries.  Thereafter, the convective 
heat transfer coefficients were obtained from the data by subtracting a calculated radiative heat 
transfer rate from the total corrected heat transfer rate; and the radiative heat transfer was calculated 
using an emissivity of 0.028 for the aluminum surfaces.   

 
Generally, the value for the effective heat conductance, U-value (the reciprocal of the R-value) of 

an enclosed airspace accounts for the contribution of heat transfer in the enclosed space due to heat 
transfer by conduction, convection and radiation.  In the absence of heat transfer by radiation, the 
contribution of heat transfer by convection in an enclosed space is normally given in terms of the 
Nusselt number, Nu (Nu = h d/ λ, where h is convective heat transfer coefficient, d is the thickness of the 
space, and λ is the thermal conductivity of the fluid filling the space).  According to many authors [38 
and 39], the convective heat transfer coefficient for an enclosed space can be given as: 
 

( ) ( ) ./  and ,Pr./ 232 µdrβλd TgGrARaaAGrahNu c
R

bc
R

b ∆====  (1) 
 
Where the coefficients a, b and c in Eq. (1) are dimensionless constants, derived from experiments, AR is 
the aspect ratio of the enclosed space (AR = height (H)/thickness (d)), Gr is the Grashoff number, Ra is 
the Raleigh number (Ra = Gr.Pr), Pr is the Prandtl number, g is the gravitational acceleration, β is the 
thermal expansion coefficient, r is the density, and µ is the dynamic viscosity.  In order to derive the 
coefficients a, b and c (Eq. (1)) from which the heat transfer coefficient, h, due to the convective 
component of heat transfer can be determined, the emissivity of all surfaces that bound the enclosed 
space must be zero (i.e. purely reflective surfaces).  However, it is not possible in practice to use 
materials having zero emissivity when conducting such experiments.  Hence, to derive the coefficients a, 
b and c of Eq. (1) from experiments, as mentioned previously, the rate of radiative heat transfer across 
the enclosed space would be subtracted from the total rate of heat transfer across the space. 
 

A number of correlations for the value of Nu in the form of the relationship given in Eq. (1) and for 
different ranges of values of Ra, AR and Pr are provided in several studies as described in the IEA Annex 
XII report [38].  Some of these correlations showed the dependence of the Nu on the aspect ratio of the 
enclosed space (AR).  As such, it is anticipated that the effective thermal conductance or the effective 
thermal resistance of the enclosed space would be affected by the aspect ratio of the enclosed space, as 
will be shown later.   

 
The 2009 ASHRAE Handbook of Fundamentals, Chapter 26 [40] provides a table that contains the R-

values for enclosed airspaces of three inclination angles (θ) of 0o, 45o and 90o, which were determined 
on the basis of the heat transfer data reported by Robinson et al. [34, 35, 36].  These R-values are being 
extensively used by modellers, architects and building designers to determine the R-values of building 
enclosures.  The ASHRAE R-values were obtained by combining the convective and radiative 
components of heat transfer from which the effective R-value for an enclosed airspace was provided for 
airspaces of different: (a) thickness (d = 13 mm (0.5 in), 20 mm (0.75 in), 40 mm (1.5 in), and 90 mm (3.5 
in)), (b) mean temperature (Tavg = 32.2oC (90oF), 10.0oC (50oF), -17.8oC (0oF) and -45.6oC (-50oF)), (c) 
temperature difference across the airspace (∆T = 5.6oC (10oF), 11.1oC (20oF) and 16.7oC (30oF)), (d) 
effective emittance (εeff = 0.03, 0.05, 0.2, 0.5 and 0.82), and (e) direction of heat flow through the 
airspace.  Note that the effective emittance (εeff) of an enclosed airspace is given as [40]: 

,1/1/1/1 21 −+= εεε eff  (2) 
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where 21  and εε  are the emissivity of the hot and cold surfaces (see Figure 1a). It is worth mentioning 
that the R-values of low-sloped enclosed airspaces are not available in the ASHRAE table.  As well, the 
effect of the aspect ratio (length/thickness) of the enclosed airspace on the R-values is not accounted 
for in the ASHRAE table [40].   
 

In recent studies by the author [28 – 32], the NRC’s hygrothermal model, called hygIRC-C, was used 
to predict the R-values of vertical, horizontal, high-sloped (45o) and low-sloped (30o) enclosed airspaces 
for a wide range of airspace different thickness, aspect ratio, mean temperature, temperature 
differential, effective emittance, and direction of heat flow. In those studies [28 – 32], considerations 
were also given to investigate the potential increase in the R-value of the enclosed airspace when a thin 
sheet having different values of emissivity on both sides was placed in the middle of the airspace as 
shown in Figure 1b. The results showed that, depending on the value of the effective emittance, the 
thickness of the airspace, orientation of the airspace, and the direction of heat flow, the R-value could 
be tripled by incorporating this thin sheet along the middle of the enclosed airspace.  The model 
description and benchmarking are discussed next. 
 
Model Benchmarking 

 
The numerical model, hygIRC-C, that was used to investigate the thermal performance of enclosed 

airspaces solves simultaneously the 2D and 3D moisture transport equation, energy equation, surface-
to-surface radiation equation (e.g. surface-to-surface radiation in enclosed airspace such as shown in 
Figure 1) and air transport equation in the various material layers.  The air transport equation is the 
Navier-Stokes equation for the airspace (e.g. air cavity), and Darcy equation (Darcy Number, DN <10-6) 
and Brinkman equation (DN > 10-6) for the porous material layers (see [4, 5, 18, 19, 23, 24, 41, 42, 43] for 
more details). 

 
The numerical model had been previously benchmarked in a number of building applications (e.g. 

see [18, 22, 23, 44]).  For the applications that are similar to this study, the numerical model was 
benchmarked against the thermal performance data for a full-scale wall assembly featuring a reflective 
insulation product.  The data was obtained using a Guarded Hot Box (GHB) in accordance with ASTM C-
1363 test method [45].  Results showed that the R-value predicted by the model for this wall system was 
in good agreement with the measured R-value (within 1.2%) [18, 44].  Furthermore, the numerical 
model was benchmarked against a number of tests that were conducted at the Cold Climate Housing 
Research Center (CCHRC) [17] and the National Research Council of Canada (NRC) [22, 23].  These tests 
were conducted using heat flow meters in accordance with the ASTM C-518 test method [33] to 
examine the thermal performance of different types of reflective insulation assemblies.  The results 
showed that the heat fluxes predicted by the model were in good agreements with the measured heat 
fluxes (within ±1.0%).  Thereafter, the model was used to investigate the contribution of reflective 
insulations to the R-value for specimens having three inclination angles (θ = 0o, 45o and 90o), different 
directions of heat flow through the specimens, and a wide range of foil emissivity [22].  

 
In previous studies, the model was used to determine the R-values of vertical enclosed airspaces (θ 

= 90o) [28], horizontal enclosed airspaces (θ = 0o) with upward heat flow [29] and downward heat flow 
[31], and high-sloped enclosed airspaces (θ = 45o) with downward heat flow [30].  In those studies, the 
predicted R-values were compared with the ASHRAE R-values [40] for enclosed airspaces of different 
thicknesses and different operating conditions.  Also, the model was used to determine the R-values of 
low-sloped enclosed airspaces (θ = 30o) and subjected to downward heat flow conditions [32].   
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For the cases of open and closed airspaces in wall systems, the model was used to determine the 
effective thermal resistance of a number of foundation wall systems with a low emissivity material 
bonded to thermal insulation and furred-airspace assembly, and subjected to different climatic 
conditions of Canada (Toronto, Quebec, Sept-Iles, Ottawa, and Victoria) [47-49].  In that study, for the 
case of open airspace, the effect of infiltration and exfiltration on the effective R-value was accounted 
for [47].  A full description of the present model and more details about model benchmarking are 
available in previous publications [4-5, 16, 18, 19, 21, 23-24, 41-42, 46]. 

 
Effect of Inclination Angle and Direction of Heat Flow 
 

As indicated earlier, the reflective insulations are being used in sloped roof systems.  In this 
particular application, it might be difficult to adapt one of the available test methods such as the ASTM 
C-518 [33] and ASTM C-1363 [45] in order to measure the R-value of specimen with reflective insulation.  
For instance, the ASTM C-518 test method could be used in the case of specimen with horizontal and 
vertical orientations only [33].  After gaining confidence in the present model, as described in the 
previous section, in predicting the R-value of specimen with horizontal orientation (e.g. see [23]) and 
specimen with vertical orientation (e.g. see [18]), it was used to quantify the contribution of reflective 
insulation to the R-value of specimen with different orientations. 
 

A parametric study was conducted to investigate the effect of inclination angle (θ) and direction of 
heat flow on the effective R-value of EPS sample stack shown in Figure 2 [22].  Note that the rate of heat 
transfer by both convection and radiation in the air cavity depends on its size and the temperature 
difference across the sample stack (∆T).  As such, the effective R-value depends on both ∆T and the size 
of the air cavity.  The results presented in this section are obtained for only one ∆T of 22.4oC (Tc = 
12.7oC, and Th = 35.1oC) and one size of the air cavity as shown in Figure 2.   
 

In the case of foil emissivity of 0.05, Figure 3 and Figure 4 show the vertical velocity (v) and 
horizontal velocity (u) contours and the airflow field in the cavity for different inclination angles (θ) 
when the sample stack was heated from the top and the bottom.  As shown in these figures, in the case 
of sample stack heated from the top with θ = 30o and vertical sample stack heated from the left (θ = 
90o), a mono-cellular with one vortex cell airflow is developed in the air cavity.  In the case of sample 
stack heated from the bottom with θ = 30o, a multi-cellular airflow is developed in the cavity with three 
vortex cells.  For horizontal sample stack (θ = 0o) heated from the bottom and top, multi-cellular airflow 
is developed in the cavity with six and two vortex cells, respectively.   
 

Figure 3 and Figure 4 show that the value of the air velocity in the cavity is greatly affected by both 
θ and direction of heat flow through the sample stack.  For horizontal sample stack (θ = 0o), the air 
velocity in the case of downward heat flow (sample heated from the top, v↑(max) = 0.6 mm/s, u→ 
(max) = 3.2 mm/s) is much smaller than that in the case of upward heat flow (sample heated from the 
bottom, v↑(max) = 18.7 mm/s, u→ (max) = 22.1 mm/s).  This is due to a downward heat flow 
encourages a relatively stable stratification of air due to differences in buoyancy compared to the case 
with upward heat flow.  As such, a sample stack with downward heat flow results in a greater R-value 
(12.19 ft2hroF/BTU) than that with upward heat flow (10.82 ft2hroF/BTU) (see Figure 5a).  By subtracting 
the R-value of both the top and bottom EPS layers (8.33 ft2hroF/BTU) from the total R-value of the 
sample stack, the middle layer with the air cavity contributed to the R-value by 3.86 ft2hroF/BTU and by 
2.49 ft2hroF/BTU in the case of horizontal sample stack heated from the top and bottom, respectively 
(Figure 5b).  Similarly, for θ = 30o, the air velocity in the cavity of sample stack heated from the top 
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(v↑(max) = 10.6 mm/s, u→ (max) = 18.5 mm/s) is also smaller than that heated from the bottom 
(v↑(max) = 14.1 mm/s, u→ (max) = 23.3 mm/s).  Consequently, the contribution of middle layer with air 
cavity to the R-value for the former (3.26 ft2hroF/BTU) is greater than that for the latter (2.65 
ft2hroF/BTU) (Figure 5b).  For vertical sample stack (θ = 90o) heated from the left or right, the 
contribution of the middle layer with air cavity to the R-value is 2.63 ft2hroF/BTU.   
 

Figure 6a and Figure 6b show the effect of the foil emissivity on the effective R-value and the 
contribution of the middle layer with air cavity to the R-value, respectively, for sample stack with 
different inclination angles and different directions of heat flow.  As shown in these figures, for all values 
of foil emissivity, the horizontal sample stack heated from the top (downward heat flow) resulted in the 
highest R-values while the horizontal sample stack heated from the bottom (upward heat flow) resulted 
in the lowest R-values.  These two cases, respectively, represent the application of using reflective 
insulations in flat roof in the summer season and winter season.  As provided in references [21-24], the 
foil emissivity can increase due to oxidation of the foil, accumulation of dust and/or vapor condensation 
on the surface of the foil.  Increasing the foil emissivity from 0.05 to 0.9 resulted in a decrease in the R-
value by 20.7% and 8.2% for horizontal sample stack heated from the top and bottom, respectively 
(Figure 6a).  Note that the emissivity of 0.9 represents the case of no foil installed on the system.  
Moreover, as the foil emissivity increases from 0.05 to 0.9, the contribution of the air cavity to the R-
value decreases by 118% (from 3.86 ft2hroF/BTU to 1.77 ft2hroF/BTU) and 49% (from 2.49 ft2hroF/BTU to 
1.67 ft2hroF/BTU) for horizontal sample stack heated from the top and bottom, respectively (Figure 6b).   
 

In the case of sample stack with inclination angle of 30o (e.g. application of reflective insulations in 
sloped roof), increasing the foil emissivity from 0.05 to 0.9 resulted in a decrease in the R-value by 15.0% 
and 9.5% for sample stack heated from the top (summer season) and bottom (winter season), 
respectively (Figure 6a).  Also, Figure 6b shows that as the foil emissivity increases from 0.05 to 0.9, the 
contribution of the air cavity to the R-value decreases by 86% (from 3.26 ft2hroF/BTU to 1.75 
ft2hroF/BTU) and 56% (from 2.65 ft2hroF/BTU to 1.70 ft2hroF/BTU) for sample stack heated from the top 
and bottom, respectively.  Furthermore, in the case of vertical sample stack (e.g. application of reflective 
insulations in wall systems, windows and curtain walls), increasing the foil emissivity from 0.05 to 0.9 
resulted in a decrease in the R-value by 11.0% (Figure 6a).  In this case the contribution of the air cavity 
to the R-value decreases by 68% (from 2.81 ft2hroF/BTU to 1.67 ft2hroF/BTU).   
 

In the case of no foil installed in sample stack or the foil surface is fully covered by dust and/or 
vapor condensation (i.e. ε = 0.9), both inclination angle and direction of heat flow through the specimen 
have insignificant effect on the effective R-value (i.e. resultant lines tend to converge as ε tends to 0.9, 
see Figure 6a).  In this case, the maximum change in the contribution of air cavity to the R-value is only 
6% (from 1.77 ft2hroF/BTU to 1.67 ft2hroF/BTU, Figure 6b).  Therefore, for accurate energy calculations 
for roof and wall systems with reflective insulations, subjected to different climate conditions, it is 
important to conduct hygrothermal simulations instead of thermal simulations in order to investigate 
whether or not vapor condensation occurs on the surface of the foil.   

 
Effect of Installing Thin Sheet in the Middle of Enclosed Airspace 

 
Dividing an enclosed airspace into 2 or more cavities by thin sheet(s) would increase the R-value of 

the enclosed airspace.  Figure 1a shows a case of 1-Cavity (i.e. without thin sheet) and Figure 1b shows a 
case of 2-Cavities (i.e. with thin sheet).  A practical example for the case “2-Cavities” is to install a thin 
sheet with low emissivity at the middle of the enclosed airspace.  For the applications of planar skylights, 

6 
 



windows and curtain wall systems, the thin sheet should be transparent that can be coated with a 
transparent material of low emissivity.  However, for the applications of wall and roofing systems with 
enclosed airspaces, the thin sheet could be opaque (e.g. aluminum foil).  The benefits of installing a thin 
sheet are: (a) reducing heat transfer by convection, and (b) reducing heat transfer by radiation due to 
low effective emittance.  These benefits resulted in higher R-value for the “2-Cavities” case compared to 
the “1-Cavity” case.   

 
In previous studies [28-32], the results showed that the R-value could be doubled due to installing a 

thin sheet in the middle of: (a) low-sloped enclosed airspaces (θ = 30o) with downward heat flow [32], 
(b) high-sloped enclosed airspaces (θ = 45o) with downward heat flow [30], (c) vertical enclosed airspace 
(θ = 90o) [28], and (d) horizontal enclosed airspace (θ = 0o) with downward heat flow [31].  However, the 
R-value could be tripled if a thin sheet is installed horizontally in the middle of the horizontal enclosed 
airspace (θ = 0o) with upward heat flow condition [29].  These results are important for future 
applications when a thin reflecting foil is placed in the middle of the enclosed airspace of planar 
skylights, windows, curtain wall systems, and Furred-Airspace Assemblies (FAA) attached to thermal 
insulation in wall and roofing systems so as to enhance the energy performance of these systems. 
 
Dependence of the R-value on the Aspect Ratio 
 

In recent studies, the dependence of the R-value on the aspect ratio, AR (AR = length (H)/thickness 
(d)) of the vertical enclosed airspaces (θ = 90o) [28], horizontal airspaces (θ = 0o) with upward heat flow 
[29] and downward heat flow [31], high-sloped airspaces (θ = 45o) with downward heat flow [30], and 
low sloped airspaces (θ = 30o) with downward heat flow [32] were investigated.  Those studies covered a 
wide range of enclosed airspace: (a) thickness (d = 13 mm (0.5 in), 20 mm (0.75 in), 40 mm (1.5 in) and 
90 mm (3.5 in)), (b) length (H = 203 mm (8 in) – 2438 mm (96 in)), (c) average temperature (Tavg = 32.2 
(90oF), 10.0oC (50oF), -17.8oC (0oF) and -45.6oC (-50oF)), (d) temperature differential (∆T = 5.6oC (10oF), 
11.1oC (20oF) and 16.7oC (30oF)), and (e) effective emittance (εeff = 0 – 0.82).  The ranges of the aspect 
ratio in those studies are: AR = 16 to 188 for d = 13 mm (0.5 in), AR = 10 to 122 for d = 20 mm (0.75 in), AR 
= 5 to 61 for d = 40 mm (1.5 in), and AR = 2 to 27 for d = 90 mm (3.5 in).  Depending on the thickness of 
the airspace and the operating conditions, the results of those studies showed that the aspect ratio can 
have a significant effect on the R-value (see [28-32] for more details).  Note that the effect of the 
airspace aspect ratio and the inclination angle of 30o on the R-values of enclosed airspaces are not 
accounted for in the ASHRAE table [40]. 
 
Practical Correlation for the R-values of Enclosed Airspaces 
 

Practical correlation was developed in recent studies [28-32] to determine the R-values in 
(ft2hroF/BTU) as a function of all parameters that affect the thermal performance of the enclosed 
airspaces, namely: average temperature (Tavg), temperature differential (∆T), aspect ratio (AR) and 
effective emittance (εeff).  The ranges of these parameters cover most of building applications.  This 
correlation is given in the following form:  
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In this correlation, )( avgc TR  is the R-value in (ft2hroF/BTU) of the enclosed airspace due to heat transfer 
by conduction only, which is given as:   
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Note that )( avgTλ  in Eq. (5) is the average thermal conductivity of air in (W/mK), which is evaluated at 

the average temperature of the airspace, avgT  in (K).  It is important to point out that the calculated 

value of )( avgc TR  from Eq. (4) and (5) must be converted to (ft2hroF/BTU) in order to be used in Eq. (3). 

In Eq. (3), the units of avgT  and T∆  must be in (K).  The other coefficients in this equation 

,,,,,,( 43210 bbbbaa )  and,,,,,,,,,,,, 432132132121 ggggcccaaaβaa  are provided in the references [28-
32] for enclosed airspace of different inclination angles and directions of heat flow.  The results showed 
that the calculated R-values using Eq. (3) for different inclination angles and directions of heat flow were 
in good agreements with those obtained using the benchmarked model as described earlier (within ±3% 
to ±5%; more details are available in [28-32]).   

 
Summary 

 
It is of practical importance in the design of building envelopes to determine the thermal resistance 

(R-value) of enclosed airspaces of different orientations and directions of heat flow, and having different 
values of effective emittance under varying climatic conditions as the results of the design may help 
avoid selecting oversized heating or cooling equipments.  In this paper, a comprehensive review about 
the thermal performance of enclosed airspaces was conducted, which included the computational and 
experimental methods for determining the effective R-value of enclosed airspaces.  The effects of both 
the inclination angle and direction of heat flow on the thermal performance of enclosed airspaces were 
discussed.  Considerations were given to review the potential increase in the R-value of the enclosed 
airspace when a thin sheet having different values of emissivity on both sides was placed in the middle 
of the airspace.  Depending on the inclination angle and direction of heat flow of the airspace, the 
results showed that the R-value could be doubled or tripled by incorporating this thin sheet along the 
middle of the enclosed airspace.  As well, the dependence of the R-value on the aspect ratio of the 
enclosed airspace was discussed for different conditions.  The results showed that the aspect ratio has a 
significant effect on the R-value.   

 
Practical correlation was provided for determining the R-values of enclosed airspaces of different 

thicknesses, and for a wide range of values for various parameters, including: (a) aspect ratio, (b) 
temperature difference across the airspace, (c) mean temperature, and, (d) effective emittance.  This 
correlation is provided by Eq. (3).  The calculated R-values using this correlation were in good 
agreements with the predicted R-values (within ±3% to ±5%).  This correlation can be used by architects, 
modellers and building designers to determine the R-values of enclosed airspaces having wide range of 
the aspect ratio and effective emittance, and subjected to a wide range of mean temperatures and 
temperature differences across the airspace.  Furthermore, this correlation can be readily implemented 
in currently available energy simulation models (e.g. ESP-r, Energy Plus, DOE).   
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Figure 1. Schematics of enclosed airspace with and without thin sheet of low emissivity on both sides, 

placed in the middle of the airspace. 

 
Figure 2. Sample stacks tested at NRC [23] 
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Figure 3. Vertical velocity contours and flow field in the air cavity of sample stacks with different inclinations 
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Figure 4. Horizontal velocity contours and flow field in the air cavity of sample stacks with different inclinations 
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Figure 5. Effect of inclination angle of sample stack and direction of heat flow on the effective R-value in the case of 
foil emissivity of 0.05 
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Figure 6. Effect of inclination angle of sample stack, foil emissivity and direction of heat flow on the effective R-value 
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  Recently developed   
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equations. 
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Examples of Numerical Simulations Conducted Using 2D and 3D hygIRC-C: 
1. hygIRC-C vs hygIRC 
2. Wetting and Drying of Cladding Systems 
3. Moisture Assessment of Cladding Systems 
4. Drying of Ventilated Wall Cavities 
5. Evaluating Wall Energy Rating (WER) 
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7. Foundation Wall Systems with Furred-Airspace Assembly 
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Modes of heat transfer in the 
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Reflective Insulations (cont.) 


o To minimize the risk of condensation and moisture 
accumulation in the building envelope, the NBCC, sec 9.25 
addresses the properties and positions of insulation materials 
serving as vapour barrier and having water vapour permeance 
(WVP) lower than 60 ng/(Pa.s.m2) 


 
o Thermal insulation industries submitted CCR-802 to revisit the 


current requirements in sec 9.25 and include other thermal 
insulations with different WVP and R-values 


• Foil emissivity can increase due to 
dust accumulation and/or water 
vapour condensation 


• Foil faced insulations are 
considered as low vapour 
permeance products 
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Reflective Insulations (cont.) 


ASHRAE R-values for 
enclosed airspaces 


 
• Requires multi-


dimensional 
interpolations/ 
extrapolations         
(∆T, Tavg, εeff) 
 


• Effect of length/height 
is neglected 
 


• 30o slope is not 
available 







OBJECTIVES 
 Benchmark hygIRC-C model 
 Conduct parametric study in order to 


develop practical correlations for 
determining the effective R-values of 
enclosed airspaces with different:  


 
 Dimensions (aspect ratios),  
 Average temperatures,  
 Temperature differentials, 
 Direction of heat transfer, and 
 Wide Range of emissivity  
 


 Test R-value correlations 
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What is the 
contribution of 
furred-airspace 
assembly with 
low foil 
emissivity on the 
R-value and 
energy saving? 


Model Benchmarking (cont.) 
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Test Method: ASTM C-1363 


Airspace (19 mm thick)
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Test Method: ASTM C-1363 
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All dimensions are in mm 


(a) Wall with no Furring 
(Reference) 


(b) Wall with Horizontal 
Furring 


(c) Wall with Vertical 
Furring 


Model Benchmarking (cont.) 


Foil Faced Insulation 
E


PS (25.4)


Vertical
Furring


Gypsum
(12.7 thick)


467.2


Bottom
Plate


Top 
Plate


467.2


Horizontal
Furring


Foil Faced 
Insulation
EPS (25.4 thick)


Gypsum
(12.7 thick)


Bottom
Plate


Top 
Plate


Foil Faced Insulation
EPS (25.4 thick)


Gypsum
(12.7 thick)


Top 
Plate


Bottom
Plate


2,
40


0


Investigated the effect of the furring 
orientation on the thermal performance 
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Airspace (19 mm thick)
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Glass Fibre
(138 mm thick)Glass Fibre


(138 mm think)


Gypsum Board (12.7 mm thick)


Wood Fibre Board (12.7 mm thick)


OSB Sheathing Board (11 mm thick)


Foil with emissivity


A B C


A B C


38 mm 


2438 mm 


Wood furring 
19 x 64 mm 


Gypsum 
(12.7 mm) 


Plywood 
(38.1 mm) 


24
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EPS (76.2 mm) 
with Foil with 
low Emissivity 
(0.06) facing the 
Furred-air space 


Used hygIRC-C model to 
predict the thermal 
performance of wall 
systems with different 
types of reflective 
insulations and account for 
the effect of infiltration and 
exfiltration under different 
climatic conditions of 
Canada 
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Test Method: ASTM C-518 


Type-A (12” x 12” x 2”) 


Gypsum (12” x 12” x 1/2”) 
Air Cavity (8” x 8” x 1”) 
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T = 55oF 


Type-A Type-A 


Type-A and Type-B (12” x 12” x 1”) 
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Reflective surface 


A
di


ab
at


ic
 


Type-A  
and B 


Type-A  
and B 


Test Conducted at Cold Climate Housing 
Research Center (CCHRC), Alaska 
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EPS (12” x 12” x 1”) 


EPS (12” x 12” x 1”) 


Air Cavity (8” x 8” x 1”) 


T = 55oF 
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Without foil (ε = 0.9) and with Aluminum Foil (ε = 0.2) 
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EPS EPS 


Glass fibre (1” thick), installed around the sample to 
minimize the side heat loss 


Test Method: ASTM C-518 


Bottom 12” x 12” x 1” EPS 


Top 12” x 12” x 1” EPS 


with Aluminum Foil (ε = 0.2) 
and without foil (ε = 0.9)  


Middle 12” x 12” x 1” EPS 
with 8” x 8” x 1” air cavity 


Test Conducted 
at NRC 
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NRC Test 


(b) Foil emissivity = 0.9 


T in oC Vy in mm/s 


(a) Foil emissivity = 0.2 


(2) Temperature (T) contours: Tmax = 26.76oC, Tmin = 21.22oC 


(1) Vertical velocity (Vy) contours: Vy, upward, max = 16.16 mm/s, Vy, downward, max = 17.54 mm/s 


(1) Vertical velocity (Vy) contours: Vy, upward, max = 9.60 mm/s, Vy, downward, max = 10.09 mm/s 


(2) Temperature (T) contours: Tmax =  26.05oC, Tmin =  21.91oC 


Test Method: ASTM C-518 
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(a) with foil (ε = 0.2)


Average heat flux on top and bottom surfaces


Facing Air Cavity (8")


Facing the Top and Bottom HFTs (6")
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Test Method: ASTM C-518 
Test Conducted at NRC 


𝑅𝑅 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
Δ𝑇𝑇
q"


 







Top Surface Bottom Surface
Model 12.67 13.07
Exp 12.73 13.11
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With Foil Model Benchmarking (cont.) 
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Test Method: ASTM C-518 


Top Surface Bottom Surface
Model 13.85 13.90
Exp 13.95 13.76
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Within < 1% 


Test Conducted at NRC 
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Test Method: ASTM C-518 


Test Conducted at NRC 


9.0


9.5


10.0


10.5


11.0


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0


Effective R-Value (Predicted based on average heat flux 
on whole surface of the sample 12" x 12")
Derived R-Value (Predicted based on average heat flux 
on area 6" x 6" at the center of sample)
Measured (based on measured mean heat flux using 6"x6" HFTs)


Experimental
Uncertainty 
= ±0.86%


Experimental
Uncertainty 
= ±1.07%
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Foil Emissivity, ε


R-
va


lu
e 


(ft
2  h


r o F/
BT


U)


    
    


    
    


        
         


     
     


 
 


 
 


 
 


 
 


 


?! 


• Using ASTM C-
518 as is 
underestimate 
the R-value 


• Proposed 
Modification on 
ASTM C-518 
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EPS (12” x 12” x 1”)


EPS (12” x 12” x 1”)


Air C
avity (8” x 8” x 1”)


Foil
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EPS (12” x 12” x 1”)


EPS (12” x 12” x 1”)


Air Cavity (8” x 8” x 1”) FoilEPS EPS


Model was used to investigate the effect of: 
 Inclination angle 
 Direction of heat flow (upward and 
downward) 
 Tavg & ∆T across the specimen 


Results 


Gravity 


x, u 


y, v 
θ 
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Foil Emissivity = 0.05 
Th = 35.1oC & Tc = 12.7oC 


(d) Heated from bottom, θ = 0o, v↑ (max) = 18.7 mm/s, v↓ (max) = -20.4 mm/s 


(e) Heated from top, θ = 0o, v↑ (max) = 0.6 mm/s, v↓ (max) = -4.3 mm/s 


Gravity 


x, u 


y, v 
θ 


Results (cont.) 







ε1 = Low
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


* Enclosed
air cavity


ε1 = Low
emissivity


ε1 = Low
emissivityε1 = Low


emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


* Enclosed
air cavity


** Enclosed
air cavity


Thickness, δ
Thickness, δ


Height, H


Height, H
(a) 1-Cavity


(b) 2-CavitiesGravity


1/2/1** 1 −= εεeff


1/1/1/1* 21 −+= εεεeff


Results (cont.) 1-Cavity vs 2-Cavities 


Gravity 
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Results (cont.) 


(a) 1-Cavity


(b) 2-Cavities


(a) 1-Cavity


(b) 2-Cavities


Note: right contour bar for “1-Cavity” and left contour bar for “2-Cavities”


Temperature 


Vertical Velocity 


ε1 = Low
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


* Enclosed
air cavity


ε1 = Low
emissivity


ε1 = Low
emissivityε1 = Low


emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


* Enclosed
air cavity


** Enclosed
air cavity


Thickness, δ
Thickness, δ


Height, H


Height, H
(a) 1-Cavity


(b) 2-CavitiesGravity


1/2/1** 1 −= εεeff


1/1/1/1* 21 −+= εεεeff


H = 12” and δ = 90 mm 
Tavg = 10oC, ∆T = 16.7oC, 
ε1 = 0.05, ε2= 0.9 







(a) 1-Cavity


(b) 2-Cavities


Results (cont.) 


Temperature 


Vertical Velocity 


ε1 = Low
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


* Enclosed
air cavity


ε1 = Low
emissivity


ε1 = Low
emissivityε1 = Low


emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


ε2 = High
emissivity


* Enclosed
air cavity


** Enclosed
air cavity


Thickness, δ
Thickness, δ


Height, H


Height, H
(a) 1-Cavity


(b) 2-CavitiesGravity


1/2/1** 1 −= εεeff


1/1/1/1* 21 −+= εεεeff


(a) 1-Cavity


(b) 2-Cavities


Note: right contour bar for “1-Cavity” and left contour bar for “2-Cavities”


H = 12” and δ = 40 mm 
Tavg = 10oC, ∆T = 16.7oC, 
ε1 = 0.05, ε2= 0.9 







Results (cont.) 


L = 12” and δ = 40 mm, horizontal airspace under upward heating 
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Effect of height of vertical cavity on its R-value 


40 mm thick 


Results (cont.) 
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R-values of airspace at different AR, ∆T, Tavg, εeff 
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Results (cont.) 
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Results (cont.) R-values of airspace at different AR, ∆T, Tavg, εeff 
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R-value Correlations 


• R-value correlations can be implemented in energy 
simulation models (Energy+, Esp-r, DOE) 
 


• Proposed to ASHRAE TC4.4 be included in the ASHRAE 
Handbook of Fundamentals 
(https://sites.google.com/site/ashraetc44/home/handbook
-page) 
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Comparison between the correlation  
and model predictions 


40 mm thick 


R-value Correlations (cont.) 
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Results (cont.) Test Correlations 
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SUMMARY 
 hygIRC-C model was benchmarked against experimental data 


obtained using ASTM C-1363 and ASTM C-518 
 Using ASTM C-518 as is resulted in underestimating the R-


value of reflective insulations 
 Conducted parametric study in order to develop practical 


correlations for determining the effective R-values of enclosed 
airspaces with different:  


  Dimensions (aspect ratios),  
  Average temperatures,  
  Temperature differentials, 
  Direction of heat transfer, and 
  Wide Range of emissivity  


 R-values obtained using the correlations are in good agreement 
with that predicted using hygIRC-C model 


 R-value correlations are ready to be implemented in energy 
simulations models (Energy+, Esp-r, DOE) 
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