

m

THE

WEST MIDDLE SCHOOL, THE SHIPLEY SCHOOL (1993)

FRAMING

Few can resist peering through a little hole to a world beyond. The asymmetrical angling of these windows is a quiet abstraction of medieval architecture, which further emphasizes the wall depth and draws the body into the role of voyeur. Most of these framing moments were found incident by incident. At the stair up to the dining hall balcony, we wanted to create a more generous pause by shoving the landing into an existing phone booth and storeroom. By removing the wooden panels, James Gamble Roger's elaborate woodcarvings become transparent and a more modern sense of public spatial depth is infused into formerly introverted rooms. At the bottom of the stair, a body size hole into the multipurpose room extends the view through that space into the activity hall beyond, continuing the dialogue of circumstantial viewing.

Berkeley 12 35 52 60 78 103 113 128 172

refabricating ARCHITECTURE

How Manufacturing Methodologies Are Poised to Transform Building Construction

Stephen Kieran James Timberlake

MASTER CONTROLLER

LOSING CONTROL The last century witnessed an unprecedented development of new materials and improved environmental systems, as well as a new understanding of old topics, such as acoustics. This expansion of choices has added up to infinitely more complex and specialized buildings that require expertise in more subjects than one architect can master. The architect cnow coordinates the many diverse consultants who are able to master their own specialities.

REFABRICATING ARCHITECTURE (2004)

SMARTWRAP™(1999) BEST4 PLENARY | FORM VS. FUNCTION

CELLOPHANE HOUSE™(2008) BEST 4 PLENARY | FORM VS. FUNCTION

- 1. THERMOCOUPLE Measures exterior surface temperatures, reflecting ambient temperatures and heat gain
- 2. THERMOCOUPLE Measures rate of thermal transfer from interior to exterior
- 3. PENDANT SENSOR Measures the temperature of the air within the cavity
- 4. THERMOCOUPLE Monitors the degree to which the cavity space buffers the interior from exterior temperature
- 5. THERMOCOUPLE Measures the thermal transfer from the cavity to interior surface

COMPONENT	FRAME	SKIN	GLAZING	WALL PANELS	BATHROOM PODS	FLOORS	ROOF	STAIRS	FOUNDATION	
MATERIAL	Bosch Aluminum Framing	WextGen Smart Wrap™ (PET)	Schüco Glass	3-Form Varia (PETG)	Fiberglass	Aluminum Grate	PVC Downspouts	Acrylic	Concrete	
	Steel Connectors	Aluminum Louvers	Schüco Aluminum Frame			3-Form Stage (PC)	Steel Gutters		Steel Rebar	
	Steel Bolts						Danpalon (PC)			TOTALS 1,800 sf building
TOTAL EMBODIED ENERGY	955,631 kWh	22,224 kWh	71,423 kWh	22,577 kWh	71,448 kWh	146,008 kWh	8,214 kWh	235,001 kWh	15,264 kWh	1,547,790 kWh 860 kWh/sf
PERCENT RECOVERED	99.99%	100%	100%	100%	100%	100%	100%	100%	0%	98.95%
EMBODIED ENERGY RECOVERED	954,675 kWh	22,224 kWh	71,423 kWh	22,577 kWh	71,448 kWh	146,008 kWh	8,214 kWh	235,001 kWh	0 kWh	1,531,570 kWh 851 kWh⁄sf
			Aluminum Framing Steel Connectors Steel Bolts		Wrap ™ (PET) Aluminun Louvers	n	Glass Schü Alum Fram	co inum	TOTALS	
TOTAL EMB ENERGY	ODIED	955,631	kWh	22,2	24 kWh	71	.,423 kWh		1,800 sf bi 1,547,790 860 kWh/s	kWh
PERCENT R		99.99%		1009			0%		98.95%	
EMBODIED RECOVEREI		954,675	kWh	22,2:	24 kWh	71	.,423 kWh		1,531,570 851 kWh/	

CELLOPHANE HOUSE™(2008)

2008

2013

t*ally*。

KNOW YOUR IMPACT

About - Support - Download News

Introducing Tally

The first LCA app that lets you calculate the environmental impacts of your building material selections directly in an Autodesk® Revit® model.

Click to download a free trial

WHOLE BUILDING LCA

Assess the embodied environmental impact of your entire building. Benchmark your impact throughout design.

DESIGN OPTION COMPARISON

Compare two or more distinct sets of building components side by side.

MATERIAL SELECTION

Compare LCA impacts and ingredients of materials and assemblies, including information from manufacturer EPDs. Tally[™] pulls material quantities from the Revit model and creates an accurate bill of materials.

TALLY® LCA APP FOR REVIT (2012)

BEST 4 PLENARY | FORM VS. FUNCTION

RESEARCH PROCESS BEST 4 PLENARY | FORM VS. FUNCTION

MODELING & SIMULATION

FIELD ASSESSMENT & DATA COLLECTION

TOOL DEVELOPMENT & DATA PROCESSING

RED REPORT

- 1. Client Goals
- 2. Program Analysis
 - Typologies
 - Building occupancy and use
 - Schedule
- 3. Site
 - Site & campus
 - Regional infrastructure
 - Facilities management
- 4. Climate
 - Regional climate
 - Micro climate
 - Thermal comfort

- 5. Landscape and Ecology
 - Geology
 - Stormwater and flooding
 - Vegetation and biodiversity
 - Ecosystem services
- 6. Local Resources
 - Energy
 - Atmosphere
 - Waste
 - Water
 - Building materials
- 7. Code/Regulations and Standards
 - Sustainability guidelines
 - Energy policy and incentives

06 PERFORMANCE & RESOURCES

кт	JH/EF		section needs updating
----	-------	--	------------------------------

Section Summary

Energy

KT/BH	RB	2	revision needed	6.1	What is Brown's local source of energy (natural gas, coal, etc.)? What is the availability of power, gas, or thermal networks? What is the carbon factor of the grid?
KT	EF	2	ready for review	6.2	What is the local utility provider for power and gas? How are the rates structured? Are there provisions for energy buyback?
KT/BH	EF	2	ready for review	6.3	How can sustainable systems or strategies be considered in relation to the other existing and planned buildings on the engineering campus? Are there any opportunities for shared energy infrastructure or load sharing with adjacent buildings/facilities?
KT/BH	EF	2	ready for review	6.4	What is the potential for on-site renewable energy generation (PV, wind, etc.)?
BH	МК	1	ready for review	6.5	What is the anticipated baseline energy consumption for the building based on comparable buildings in this region?
BH	МК	1	ready for review	6.6	Are there emerging technologies or systems relevant to managing the heavy energy use of laboratory buildings?
KT/BH	EF	3	ready for review	6.7	How might alternate energy reporting formats be applicable to the project?
				Water	
KT	Л	2	ready for review	6.8	What is Brown's water source and treatment infrastructure? What are associated costs?
				Atmospher	re
KT	EF	3	ready for review	6.90	What are the airborne pollutants present on site? Do any onsite pollutants preclude particular façade materials?
				Waste	
KT	MD/EK	2	started	6.10	What is the solid waste management infrastructure on site?

6.11 How do we dispose of hazardous laboratory waste?

ready for

re vie w

EF

1

KΤ

*Sources: *2007 Benchmarking and Data Book of Water Utilities in India" *2005 National Building Code: India"

AFFORDABLE, SOLID, QUICK-TO-BUILD, SUSTAINABLE HOUSING SOLUTION FOR INDIA'S COMPOSITE CLIMATE ZONE

IDEAL CHOICE HOMES™ BEST 4 PLENARY | FORM VS. FUNCTION

IDEAL CHOICE HOMES™ BEST 4 PLENARY | FORM VS. FUNCTION

GREEN ROOF VEGETATION STUDY

2013 48 SPECIES 60% PLANTED 40% RUDERAL

FORBS (ASTERACEAE)

Ageratina altissima	Snakeroot
Ambrosia artemisiifolia	Ragweed
Arctium minus	Burdock
Artemesta vulgaris	Mugwort
Aster cordifolius	Blue Wood Aster
Aster novae-angliae	New England Aster
Aster pilosis	Skinny Aster
Conyza canadensis	Horseweed
Erigeron annus	Daisy Fleabane
Lactuca serriola	Prickly Lettuce
Leontodon autumnalis	Fall Dandilion
Liatris aspera	Rough Blazing Star
Liatris squarrosa	Scaly Blazing Star
Solidago canadensis	Flat Leaf Goldenrod
Solidago sempervirens	Seaside Goldenrod
Taraxacum	Dandelion

FORBS (FABACEAE)

Melilotus officinalis	Sweet clover
Trefoil spp.	Pea (trefoil)
Trifolium arvense	Rabbit's foot
Trifolium pratense	Red Clover
Vicia cracca	Bird wetch

FORBS (ASSORTED)

	Acalypha rhomboidea	Rhobmic Copperleaf
	Asclepias syriaca	Common Milkweed
	Asclepias tuberosa	Butterfly Milkweed
	Chamaesyce maculata	Spotted Sandmat
	Chenopodium album	Lambsquarters
	Euphorbia	Euphorbia (Spurge)
	Lipidium	Lipidiium
	Lythrum salicaria	Purple Loosetrife
	Oenothera biennis	Primrose
	Oxalis stricta	Woodsorrel
	Plantago major	Plantain
	Rumex obtusifolius	Broadleaf Dock
	Silene latifolia	White Campion
	Thlaspi arvense	Field Penny Cress
	Verbascum thapsus	Common Mullein
	GRASSES	
	Andropogon gerardii	Big Bluestern
	Bouteloua curtipendula	Sideoats Grama
	Cyperus esculentus	Nutsedge
	Digitaria	Crabgrass
	Fescue spp.	Fescue
	Panicum Virgatum	Swithgrass, Panic Gras
	Phieum pratense	Timothy
	Schizachyrium scoparium	Little Bluestern
	Setaria faberii	Foxtail Grass
	Sporobulis heterolepsis	Prairie Dropseed
	TREES	
_	Acer saccharum	Sugar Maple
=	Amelanchier spp	Service Berry
_	Juniperus virginiana	Eastern Red Cedar
_	Pinus strobus	White Pine
	Quercus alba	White Oak
	Rhus typhina	Staghorn Sumac
	Ulmus americana	American Elm
	SUCCULENTS	
	Phemeranthus calycinu	Flowering Portulaka
	Sedum hispanicum	Blue Carnet Sedum

2006 11 SPECIES 100% PLANTED

2012 54 SPECIES 56% PLANTED 44% RUDERAL

CONSORTIUM FOR BUILDING ENERGY INNOVATION

Values

INFLUENCE the industry to design, implement, and operate integrated energy-efficient renovations.

REPEATABLE DEMONSTRATION incorporating replicable energy-efficient technology, processes, and procedures that are affordable, workable and efficient.

LEARNING about the efficacy, affordability, repeatability and constructability of efficient and effective energy retrofits.

COLLABORATIVE ENVIRONMENTS to provide a nexus for regional demonstration, learning, and influence.

SYSTEMS INTEGRATION for efficient and effective energy retrofits through synergistic integration of dependable components and subsystems.

COST CERTAINTY to use available funds to maximize scope and minimize long-term facility costs with constant consideration of premium and affordability.

TIME RELIABILITY make decisions at the most responsible moment and create a safe and quality work environment.

	ATTENDEES INTEGRATED PROJECT TEAM	1 INTEGRATED BUILDING STEERING DESIGN GROUP COMMITTEE
TEAM vernance Chart ues Matrix	Schedule Workshop 1	Process/Introduction Initial design value stream mapping
aboration Plan	Schedule Workshop 2	Second design mapping session Produce draft milestone schedule
	Technology Workshop 1	Finalize technology Develop next draft of BIM PxP
formation tream Map	IPD Workshop 1	Update collaboration addendum Identify project metrics
Schedule edule ork Cycle	Integrated Design Group Meeting	Confirm BIM standards Confirm project BIM goals Review draft BIM PxP Review draft collaboration addendum
COST of-Work Model	Schedule Workshop 3	Produce milestone/phase/look-ahead Define weekly cycle & meeting agendas
Cost Model alue Design Process counting Plan	Technology Workshop 2	Develop workflows (model development, sharing, cost evaluation tools) Finalize initial workflows to start design
am	Cost Workshop	Review initial cost model/risk areas Define holistic cost metrics and tools Define target value design process
etrics rocess s	Team/Values Workshop	Develop high performing team Finalize communication, governance, and decision making structure Develop shared project values matrix BSC
CE	IDG Meeting Conceptualization	Validate users needs/program Identify design criteria/metrics Establish sustainability goals/plan
ity Metrics	Integrated	Building systems discussion

TRADITIONAL PROCESS

INTEGRATED PROCESS

INTEGRATED PROJECT SCHEDULE

TRADITIONAL WORK PLAN

Cost estimating at end of phase results in value engineering and redesign effort

INTEGRATED WORK PLAN

Cost modeling to inform design results in target value design

 \overline{r}

MECHANICAL ZONE 1 LARGE PUBLIC SPACES

PASSIVE & ACTIVE CHILLED BEAMS / DEDICATED OUTDOOR AIR SYSTEM / PERIMETER RADIANT HEATING

MECHANICAL ZONE 3 SMALL SPACES

DUCTLESS SPLIT SYSTEM (VRF) / NATURAL VENTILATION

Baseline Energy Reduction EUI E Cost Reduction LEED EAc1 Energy Star Rating 71 kBtu/sf-yr 52.5% (+75% than target) 34 kBtu/sf-yr 37.5% (+25% than target) 15 out of 19 points 94-97

BUILDING 661 INTERIOR BEST 4 PLENARY | FORM VS. FUNCTION

BUILDING 661 INTERIOR BEST 4 PLENARY | FORM VS. FUNCTION

BUILDING 7R NEW CLASSROOM BUILDING BEST 4 PLENARY | FORM VS. FUNCTION

Baseline53 kBtu/sf-yrEnergy Reduction36.2% (+20% than target)EUI34 kBtu/sf-yrE Cost Reduction39.3% (+31% than target)LEED EAc114 out of 19 points

RAINSCREEN DESIGN (REDUCED R-VALUE)

	R- Value	North (Level 1)	North (Level 2)	West (Level 1)	West (Level 2)	South	East	Building Total	Systems
Total Façade		3,550	5,550	850	850	9,100	1,700	21,600	
Opaque Wall	20	1,825	1,790	510	275	6,605	1,085	12,090	- 12,090 Solid wall
		51%	32%	60%	32%	73%	64%	56%	
Clear Glazing	4	1,725	1,035	340	160	2,495	615	6,370	
		49%	19%	40%	19%	27%	36%	29%	9,510 Curtainwall / Storefront
Translucent Insulated Glazing	8.5		2,725		415			3,140	
			49%		49%			15%	_
	Avgerage R-Value	12.2	11.4	13.6	11.4	15.6	14.2	13.6	
	rugeruge it fuide		22.1	10.0	11.1	2010	2112		

BUILDING 7R FACADE STUDIES BEST 4 PLENARY | FORM VS. FUNCTION

TWIN WALL ACRYLIC PANEL

INSULATED TRANSLUCENT PANEL

BUILDING 7R SOUTH FACADE BEST 4 PLENARY | FORM VS. FUNCTION

BUILDING 7R CLASSROOM DAY LIGHTING ANALYSIS BEST 4 PLENARY | FORM VS. FUNCTION

BUILDING 7R MECHANICAL SYSTEMS DETAIL

BEST 4 PLENARY | FORM VS. FUNCTION

EXPERIMENTAL ZONES

 $\overline{\mathbf{F}}$

Zone 1: Amendment Study

Zone 2: Plant dynamics

PLANTING PLAN

CONSORTIUM FOR BUILDING ENERGY INNOVATION

BEST 4 PLENARY | FORM VS. FUNCTION

KIERANTIMBERLAKE 215-922-6600