
An Information System for Component Building
by Theodore H. Myer

Bolt, Beranek & Newman, Inc.

Abstract

An information system for building
design is explored as a case history,
with emphasis on the characteristics
most important to the user. Experience
with the system suggested that key
criteria are the effectiveness with
which designs are represented in the
computer, and the ease with which users
can work with the stored material. The
design of a simple information system
that appears to meet these criteria is
des cri bed.

I. Introduction

This paper describes research
carried out in collaboration with Carl
Koch and Associates, Architects, under
the sponsorship of the Urban
Jevelopment Corporation of New York
State. The project grew from a desire
to apply computer technology to the
information problems of component
:,uilding design.

Our working context was Carl
Koch's Techcrete building system.
Techcrete is based on precast floor
olanks and bearing wall panels; post
tensioning techniques enable
construction of high- as well as
low-rise buildings. Our partcular
focus in this project was the use of
Techcrete in the design of a mixed
public and private housing complex of
about 1000 units for a site near New
York City (1).

Within this context we wanted to
investiqate a computer system capable
of managing design information and
supplying a number of separate
retrieval, analytic, and reporting
functions. We approached this by
developinq a limited initial system,
nutting it into practical use, and

letting our experience in using the
system guide its further development.
By this means we gained not only a
practical working tool, but also some
insight into the nature and
applicability of information systems in
architecture.

In the work, our greatest concern
was to find an effective way to
represent building designs in the
computer. The representation would
have to carry information ~atisfying
the various functions to be included in
the system. More importantly, we felt,
it would have to be convenient to work
with. This suggested ease of assembly
and editing as key criteria, and most
importantly "naturalness" in the sense
of reflecting the designer's own ways
of thinking about and organizing
architectural material.

What resulted was an initial
system with incremental cost estimation
as its main function. Once in use, the
system became more general. At this
writing it includes or will shortly
include reporting functions for net and
gross areas, heat and cooling loads,
and various schedules. Also, durinn
use the system's data base evolved into
a cataloguing and control tool for
Techcrete, and a pool of design
information upon which to draw in
establishing new designs. At present
we are adding a graphic capability and
plan to extend the system to aid in
manufacturing and construction.

II. The Initial System

We selected construction cost
estimation as a first goal, since we
felt it would require an initial system
with most of the important components
needed in a subsequent. more elaborate
system. Within the general framework

299

of cost estimation, we were
particularly concerned with incremental
estimation (2,3). That is. we wanted
the designer to be able to test design
chanqes for their effect on
construction cost, in a continuous
manner throughout the design process.
That Qoal was met by buildinQ an
initial system with four main
comoonents:
1) . A representation for building

desiqns.
2) A library of building components

containing cost and other
information about each component.
The component library provides a
base for buildinq the design
representation, and a source of
cost data for estimation.

3) A series of commands for assembling
and modifying the design
representation.

4) Computer programs that perform
quantity surveys, compute costs,
and issue cost reports.

Figure 1 shows the functional
relationship of these four components.
Physically, the system resides in a DEC
PDP-lO time-shared computer, under
control of the TENEX time-sharing
system under development at BBN.
Communication and data input take place
throuqh remote Teletype terminals.
Reports can be output via Teletype or
line printer.

INITIAL SYSTEM

I ASSEMBLE AND ED IT L.....
~~D~E~S~IG~N~RE~P~R~E~S~EN~T~A~T~IO~N~~J .

r PERFORM QUANT ITY SURVEYS I...­
~~AN~D~I~S~S~U~E~C~O~S~T~R~E~P~O~R~TS~~r

Figure 1

COMPONENT
LIBRARY

DESIGN
REPRESENTATION

To represent buildings in the
computer. we selected a tree structure
(4). Similar techniques for organizing
design information have been used by a
number of other workers (5.6,7,8).
Carr (5). in particular, gives a lucid

explanation. We chose a tree structure
as likely to meet our demands for ease
of manipulation and "naturalness". In
addition. the tree quite easily
supports cost computation.

I BR

~
~

SIMPLIFIED BUILDING PROJECT

SITE PLAN

2 BR

~
R

BB

BR B

APARTMENT LAYOUTS

Figure 2

3BR

BR

To illustrate how a building
project can be mapped into a tree
representation in the computer. Figure
2 shows a grossly simplified build~ng
Project and Figure 3 shows ,ts
representation in computer memory. As
indicated in Figure 3. the tree is made
up of nodes and branches. with nodes
standing for groups of things and
branches pointing to other nodes to
indicate what and how much of it
belongs in each group. For example,
the top node. named "PROJECT-I", stands
for the entire project and is made up
of five buildings - two of type I and
three of type 2. Each building in turn
is a group of apartments. Each
apartment comprises . low~r-le~el
groupings accounting for lts lnterlor
components and structural envelope.

TREE REPRESENTATION

Figure 3

This aggregation into groups continues
down through the structure, until at
the bottom one reaches the elementary
components from which the project is
bu i 1 t.

In computer memory, nodes comprise
data blocks. Within a node, branches
are represented by pointers to other
nodes. Each branch has an associated
number indicating how much of the
second node is contained in the first.
The tree structure permits rather
efficient use of computer memory
because, as with multi-level
"instances" in computer graphics, or
nested subroutine calls in ordinary
programming, each component or assembly
is defined just once and then referred
to or "called" when needed.

As well as being compact, the tree
structure allows considerable
flexibility. Though Figure 3 suggests
seven levels and specific uses, the
designer can employ as many levels as
wanted for whatever purposes he has in
mind.

Although most branches in Figure 1
descend one level, there is nothing to
prevent branches that descend multiple
levels or none at all. This permits
low-level components or groups to be
"tacked on" to groups much higher in
the structure. For example, exterior
light fixtures (at the bottom level)
might be added to the project (at the
top) in this way. This also makes it
easy to create slightly modified
versions of standard groupings. For
example, a modified three-bedroom
apartment might reference the standard
version and be augmented by a few extra
square feet of interior partition.

Closely related to this
augmentation capability is the
possibility of subtracting from a
standard by using negative branch
quantities. This proved useful in the
actual project in permitting modified
versions containing fewer of one
component or another than the original.

Finally, although the tree in
Figure 3 ascends to a single node at
the top, there is nothing against
multiple top nodes, and this is
sometimes useful. With the actual
project, this permitted useful
subgroupings of the buildings. For
example, one collection of "top" nodes
called out groups of buildings
segregated by height, while another
pair of nodes separated the project

into public and private sectors. These
partitionings of the data were useful
in serving design and legal needs of
cost estimation.

Thus the central component in the
information system is a flexible and
rather loosely organized tree
structure, to be approached very
directly by the designer in formulating
design representations.

As suggested by Figure 3, elements
of the system1s second major
ingredient, the building component
library, form the bottom of the tree.
Actually, this data is kept in a
separate part of computer memory and
referred to by branch pointers in the
nodes that lie above it. In the
initial system the library contained an
identifying code for each component, a
text description, the CSI and FHA
categories to which the component
belongs, and certain temporary storage
registers to hold component quantities
during estimation.

The component library forms the
most permanent part of the data base,
changing only as the building system
itself is changed. In contrast, the
tree structure that represents a given
building project will grow and change
as the design is built up and
successively modified. Furthermore, at
any given time, the component library
may support any number of separate tree
structures, each describing a different
project.

INITIAL SYSTEM COMMANDS

DATA ENTRY AND EDITING

DEFINE NODE_LEVEL_
BRANCH QUANT ITY

KILL NODE_
PUT BRANCH_ON NODE_QUANTITY_
TAKE BRANCH_FROM NODE_
REPLACE BRANCH_OF NODE_WITH BRANCH_
QUANTIFY BRANCH_OF NODE_QUANTITY_

ESTIMATION AND LISTING

ESTIMATE STARTING AT_REG/INV_FORMAT_SORT_
REPORT COSTS FORMAT_SORT_
LIST FROM LEVEL_TO LEVEL_
LIST NODE_

Figure 4

To assemble and manipulate design
rep~esentations, the system includes
simple commands (Figure 4) that refer
directly to tree elements. These
commands govern the creation and
destruction of nodes and the

modification of node contents. To
create a node (Define) one specifies
its level, names it, and then lists the
branches and their quantities that form
its contents. To remove a node (Kill)
one need only give its name. To change
node contents, one can add (Put) or
remove (Take) branches. Although these
four cOMmands suffice for all
functions, two more were included for
convenience. Replace is equivalent to
Take followed by Put; Quantity allows
one to change quantity without
otherwise affecting node contents. As
an added convenience, Take, Replace,
and Quantity can modify all nodes, if
desired, rather thai a single named
node. This allows one to do such
things as replace all occurrences of
one building Component with another.

Internally, the assembly and
editing commands are backed up by
appropriate indexing, retrieval, and
storage management programs. As
editing occurs these programs access
and modify the tree structure.

The remaining commands in Figure 4
govern the estimating and reporting
functions that form the fourth
component of the initial system. To
perform conventional cost estimates, a
simple "tree-walking" program performs
the equivalent of a quantity survey on
the tree structure. It does this by
tracing down all possible branches,
collecting branch quantities as it
goes, and accumulating them in
temporary registers at the bottom of
the tree. A reporting program then
computes and tabulates component and
tota 1 cos ts.

The tree-walking program can be
started off at any point in the tree.
If started at the top, it will yield an
estimate for the whole project. If
started somewhere else, it will yield a
quantity survey and cost estimate for
the node selected. Figure 5 shows two
reports for the tree shown in Figure 3,
one covering the whole project. and one
covering just the one bedroom
apartment. These were produced by
starting the program at nodes Project-l
and I-BR respectively. This ability to
begin the takeoff process anywhere
permitted separate estimates of
individual apartments, buildings, and
other design subgroupings of the
project.

Figure 5 shows just one of several
possible report formats. Component
tabulations can be sorted, if desired,

by CSI or FHA categories. As w~ll as
detailed tabulations, summary reports
can be produced giving category totals
or just the final total.

COST REPORT -.. LNI T PRJ I PAGE •

MATERIAL COST LABOR COST
NME DESCRIPTION QUANT! TY UNl T TOTAL l.n T TOT".,.

STUD 2+ 1/2" MET STo (S. F) 171600 .32 54912 0.80 e
PLBD 1/2" GVP 80 28."". .e. 22 .. "0 013 360400
INSL 2" BATT [NSlLATI ON 632ge •• 5 3160 •• 5 3168

SIDG METAL SIDING 63209 .27 .'8''''' • 28 126 •

TUB BAnnUB .., 35.ee 2198 20.90 12ee
TSAR rOWEL BAR 12e Ie"" 128 .5. ..
IIALL PRECAST WALL pANEl. se 86 ... 88 04U,8 432.8" 21688
FPLK PRESTRESSED JIl.R PLK 1008 98.01!J 9GBS" 47.00 .7eee

TOTAL BASI C COSTS 232956 122860
INSURANCE & TAXES ON LABOR • 30% 36618
TOTAL LABOR 122"'"

SUBTOTAL. 39163"
GENERAL CONOI TI ON 5 • 51 19582

SUBTOTAL <411216
OVERHEAD' PROFIT • un 41122

SUBTOTAL <452337
BOND • 11 <4&23

GRANO TOTAL COST IMI T PltJl 456861

COST REPORT -- l.tlIT I-BR PAGE I

MATERtAL COST LABOR COST
NME OEseR I PTl ON QUANT! TY IJ'H T TOTAL. UNIT TQT.ct.

STUD 2+ 112" MET 510 C S. F> 1508 .32 •• e a.88 8
PLBD 1/2" GYP SO 1.2 .13 31e
JNSL e" BATT INSL1..ATlON .0. .es 3e .es 3e

SIDG METAL SIDING 6e. .27 162 .2. 128
TUB BATHTUB I 35.09 35 20.88 28
TSAR town. BAR 2 1e00 2 .se ,
IlALL PRECAST WALL PN' E1. 2 864.08 1296 ",32.00 ...
FPLK PRESTRESSED FLR PLK 20 98.88 1800 47.00 ...
TOTAL. BAS! C COSTS 3991 2811

INSURANCE • TAXES ON LABOR II 381 621
TOTAL l.ABOR 2971

SUBTOTAL .68.
G~ERAL CONDITIONS • 51 33.

SUBTOTAL 78U
o V£RH £AD • PRO FI T , un 78.

SUBTOTAL 7726
BOND • .. 77

GRAND TOTAL COST I.l0l11 I-BR 7803

Figure 5

The downward direction of the
quantity survey program suggested
reversing the procedure, starting with
unit costs at the bottom, and extending
costs and quantities up through the
structure above. In contrast to the
ordinary estimate, which analyzes a
single node in detail, this procedure
computes the total cost of each node in
the tree. We called the resulting
output an "inverted" cost report
because the processing involved is,
loosely speaking, the inverse of the
ordinary case. In practice, inverted
reports provide a convenient tool for
analyzinq the relative cost
contributions of different parts of a
project. For example, one such report
shows, for every node, the cost
contributed by each of its branches.

The Estimate command starts either
of the two estimating processes ano
allows one to select an initial report
format. Report Costs permits
additional reports on the data
Qenerated in a prior estimate. The

List commands provide for tabulations
of tree and component library contents.

III. Practical
Extensions

Experience and

Once complete, we put the system
to work, and tested it during several
stages in the design development of the
housing project. Figure 6 shows a
model photograph of the project; its
lOOO-odd units were grouped into
three-, six-, te~-, and eighteen-story
buildings. Inside the computer, the
project required a tree of 10 levels
and about 200 nodes.

As expected, the system's chief
value was its ability to do incremental
and comparative estimation. It was
p'ossible to test such things as
differing apartment layouts and
alternative groupings of apartments
into buildings, for their effect on
total project cost. It was also useful
to compute unit apartment and building
costs, and to compare costs for public
and private sectors. After each series
of definitive design changes, we ran a
complete series of cost reports, which
formed one basis for subsequent design
work.

Figure 6

During this testing phase we began
to add new functions. We have
completed report functions that
tabulate floor areas and compute total
areas for each type of precast panel
used in a design. These functions use
tree-processing techniques similar to
the quantity survey. For example, to
calculate floor areas, one traces the
tree downward to the apartment level,

and picks up unit areas stored on tnese
nodes. We are currently working on
heat and cooli~q load and schedule
reports. To generate finish or door
schedules, we will move across the tree
at the apartment level, tracing down at
each node to locate the desired items.

During testing, we watched the
reactions of users with some concern.
The tree representation exposes the
user rather directly to the data
structure inside the computer. It
requires that the map design
information from sketches and drawings
into a hierarchical representation
quite different in appearance.
Further, he must keep the tree
constantly in mind as the design
progresses, editing it each time
drawinas are changed. We were
concerned that ali this would be
burdensome enough to make the system
unattractive.

In practice~ this fear proved
unfounded. With some practice, the
tree representation and editing
commands proved quite easy to use. In
fact, some of the more powerful
techniques for using the tree structure
developed only after some experience
with the system.

More importantly, the tree
structure had a positive effect beyond
its use in the computer. It developed
into a tool that helped the designer
organize and control design information
outside the machine. Figures 7 and 8
make this somewhat clearer. In Figure
7, graphic information has been
organized in a hierarchical fashion
exactly paralleling the tree structure
in the computer. Individual components
on the left are carried through
successive levels of aggregation
leading to buildinqs on the riqht.
Output, taken directly from the
computer, tabulates the contents of
each grouping; a uniform nomenclature
has been used on the drawinqs and in
the computer. Figure 8 carrtes this
one step further, to the level of the
site plan for the whole project.

What these montages show is the
beginnings of a cataloguing system that
keeps track of bUilding components and
their various levels of assembly into
complete buildings. In part, this
catalog resides in standard details and
assembly drawings. Information inside
the computer augments the drawings,
indexing and organizing them, and
quantifying their contents.

STRUCTURAL COMPONENTS

StTu<tuTalpad.age

INTERIOR COMPONENTS

STRUCTURAL PACKAGE

1. ~~
l,r"
4,.'d
1, ,~

BUILDING MODULE

BUILDING MODULE
4br end
Stcucturalpack_g.
BaSH pac~ag. 'PI!
Cu' <a en " •• 11 d r.~e .<;lnQO"'s, "a~lk ,0' [ok etc) e~,o . ., ~~"

C5U
Extra plu..,b'ng co"" top floo, PH
C, ed It h. aU ng cos t, top [1001" ~V~X
Slab 00 ~rad. with u[111 ty trench tPC6
Door package at apt, en«y(door,frame,paln<) ~H
Roof P~S. ([n<1 'a£na,>n«d."on,roof) nw~
Strap, gyp.bd .nO paint. ends at SOaU "'all !;l'
,asCiO at end ·.all and «turnS '0 stan ru
5t<ap. gyp. hcl anJ pal"" end. at "Ole "all It~~
Do",nspout OSVl
D@duct[opp1nga<botto"flo", CTo6

BUILDING

Figure 7

Although this "design catalog" was
useful in the present project, it will
be most valuable as a permanent control
tool for Techcrete. Within the

UIIII Inl

--u;i~~---ou .. nu

~i;;-------·;:';
,,"1 2."
"!IV 2."
US '.'. nll 2."
6WU 1.11

!:r it::
nu '.11
1111 2."
eAl '.11
su 11.'.
ODO 1."

Figure 8

computer, this ongoing usage of design
data has the effect of introducing a
feedback loop, with completed design
representations cycling back to become
part of a pool of information upon
which to draw in formulating new ones.
This means several things. First,
intuitively. it would seem to reflect
rather naturally the evolving use of
the building system in successive
projects. The outcome of one project
will influence the initial desiQn of
the next, and the feedback of design
information in the computer reflects
this quite directly.

Second, feedback will speed up the
process of assembling tree
representations. In this initial
project, it was necessary to start from
scratch, defining every node, and
building up the tree level by level
until it was complete. In the future,
~Ie will be able to call in more or less
complete "chunks" of tree structure to
formulate an initial representation.

Third, the ability to start
with a fully developed tree will
us a uniformly detailed basis for
estimation throughout the life

off
give
cost
of a

design project. This should overcome
the discontinuity that occurs when a
preliminary estimating basis (such as
square footage) is dropped in favor of
detailed quantity surveys (2). Figure
9 shows the system as extended to
include additional report functions and
the feedback cif design information.

EXTENDED SYSTEM

I ASSEMBLE AND ED IT L---
DESIGN REPRESENTATION ,--

I PERfORM QUANT ITY SURVEYS l...­
AND ISSUE COST REPORTS r

I AREA REPORTS l-
I HEAT AND COOLING

LOAD REPORTS r-
I ROOM fiNISH AND r-OTHER SCHEDULES

COMPONENT
LIBRARY

1

DES IGN
REPRESENTAT ION

Figure 9

I PAST DES IGN I
INfORMATION

Inevitably, computer indexing of
conventional drawings also suggested
that we add a graphic capability to the
system. In the beginning we had
rejected this idea as jeopardizing our
chances for practical results.
However, by this time, we were pleased
with how far we had got without
graphics, and it seemed desirable to
try some experiments.

Figures 10 and 11 show Some
preliminary results of this work. The
material in these fiqures was assembled
using an interactive display terminal,

-

: ~~ 00 0
= ~ o D

, , I I I I I I I I L I I I I

~ ~ u CI 0 ~

6 , >-< >-+---<
= , , =

Figure 10

and then reproduced on a plotter. At
the left in figure 11 we have created
graphic symbols representing structural
building components. In the center
these have been grouped into the shiell
of a single apartment. At the right is
a second group of components intended
to form the apartment's interior
contents.

Figure 11 shows a plan, at ground
level, of a complete building. To get
from figure 10 to figure 11, we
combined the interior components with
the structural shell to form a complete
apartment. Then three of these were
joined to form the building. The
scales and tick marks in both figures
are the computer equivalent of drafting
tools; they help position picture
elements as they are grouped together.

Internally, we used a tree
structure similar to that in the
initial system to store these drawings.

o
o DO

o

o
o DO

o

Fig u re 11

Individual components form the bottom
level of the tree; groupings of these
form nodes at successive levels above.
Thus, figure 11 represents a single
node at the top of the tree, containing
three instances of the apartment node
one level below plus an exterior wall.
The only differences between this tree
and the non-graphic one are 1) that
component descriptions at the bottom
level must contain graphic information
describing their pictorial
representations, and 2) that branches
in the structure above must contain
relative coordinates for the nodes they
call out.

Externally, we exposed the user to
the tree organization in much the same
way as was done in the initial system.
To produce figures 10 and 11, graphic
symbols were first defined using a

stylus device in conjunCtlOn with the
display. Next, instances of these were
called up onto the screen and grouped
tOQether into successive levels of
hierarchy until the pictures were
complete.

In doing these experiments, we
were not seeking to perform basic
graphics research. Thus, for example,
we used granhics support programs
already available at BBN. Our goal,
rather, was to explore the possibility
of incorporating grarhics into the
system we had built, using already
established techniques. Although the
\~ 0 r k iss t i 11 ex per i men tal " the r e
appear to be few difficulties in the
way of putting it into practice.

IV. Future Extensions

So far we have considered system
features carried at least to the point
of experimental testing. What follows
are some thoughts on extensions to be
added in future work.

For one thing, there are several
useful functions that would fit quite
easily within the existinq system
framework. These include a' number of
engineerina analysis and reporting
tools. Without stretching the system
too much one could at least partially
automate the specification process by
linking text passaaes to the entries in
the component library. Somewhat more
ambitiously, with added information and
appropriate programs, the component
library could be expanded into a
retrieval and analysis subsystem that
would assist in component evaluation
and support further engineering
functions.

Viewino the full scope of
component building - from manufacturing
through construction - one can foresee
further extensions. If extended into
manufacturing the system could take on
many functions of information systems
currently in use in industry
inventory control and production
scheduling, to name just two. In
construction, it could assist in
progress and cost monitoring, and job
scheduling. As well as yielding a
broader system, the manufacturing,
design, and construction functions
woul~ mutually reinforce each other.
For example, inventory control could
utilize pooled quantity surveys of all
current projects. Conversely, direct
access to manufacturing data would

vield better unit costs and more
~ccurate estimates.

Although developed for component
building, we feel the system would also
be effective with conventional
structures such as housing, schools,
and hospitals that are inherently
hierarchical or repetitive. It
probably wouldn't work too well,
however, with amorohous or highly
singular buildings such as opera houses
or churches.

Although many functions could be
supported by the present system, some
jobs would require changes or
extensions to its basic structure.
Design generation, traffic simulation,
and anythina but the most rudimentary
code checkino all reouire topological
information "that ca~'t be repres~nted
very well in a simple tree. Eastman
(9) discusses other information
structuring techniques that can be used
in architectural problems.

V. Conclusion

This paper has explored the
development of an information system
for building design, focussing on its
appearance to the user, and on the
experience gained in usinq it. In this
context, we feel the project
demons tra tes pri nci pa lly 1) the
effectiveness with which simple tree
structures can represent building
projects, 2) the eas~ with which user~
can work directly with such structures,
and 3) the extent to which a rather
simple information system can assist in
the design process.

Acknowledgement

The author wishes to thank
Margaret Ross and Leon Lipshutz of Carl
Koch and Associates, and Daniel Bobrow
and William R. Sutherland of BBM for
their contributions in support and
guidance of this effort.

- Notes -

1. Techcrete is a registered trademark
of Techrete Inc. Further information
about the system can be obtained fro~
Carl Koch and Associates, Inc., 35
Lewis Wharf, Boston 02110.

2. t1ye r, T. H., and R. I. K r au s s •
"Computer-Aided Cost Estimating

Techniques for Architects". Institute
for Applied Technology. National
Bureau of Standards. December 1965.

3. Krauss. R.I.. and T. H. r4yer.
"Computer-Aided Cost Estimating
Techniques" in Computer Applications in
Architecture and Engineering. N. Harper
Ed •• New York: r"cGraw-Hlll 1968.

4. Strictly speaking. we used a "semi­
tree". since downward pointing branches
can meet at nodes lower in the
structure.
5. Carr. C. S •• "Geometric Modeling".
Computer Science Department. University
of Utah, 1969.

6. Newman. William M •• "An Experiment­
al Program for Architectural Design".
The Computer Journal. Vol. 9 No.1.
May 1966.

7. Cogswell. A. R •• Werner Hausler,
and C. David Sides. "Integrated
Building Industry System", North
Carolina Fund, 1968.

8. Davis. Charles F., "An Architectur­
al Data Management System", to be
published at this conference.

9. Eastman, Charles M., "Representa­
tions for Space Planning",
Communications of the ACM, Vol. 13
No. 4, April 1970.

	EDRA02-Myer-299
	EDRA02-Myer-300
	EDRA02-Myer-301
	EDRA02-Myer-302
	EDRA02-Myer-303
	EDRA02-Myer-304
	EDRA02-Myer-305
	EDRA02-Myer-306
	EDRA02-Myer-307

