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Abstract

In the design of large electrical, mechanical,
structural, etc,, systems, the architect fre-
quently faces a normalization problem: given a
system made by a large number of components, a
procedure, generally a numerical procedure, is
available for the determination of the minimum
size required by each one of the components.
The adoption of the sizes obtained in this
fashion would then represent the optimum design
solution in the sense of minimum cost if it
were not for the well-known fact that repeti-
tion of components in a system yields a reduc-
tion in fabrication and assemblage costs, If
the fractional reduction in cost due to repe-
tition is assumed to be known for each type of
component, the problem consists in determining
the combination of sizes for which the greatest
reduction is achieved. This is a combinatorial
problem of vast arithmetic proportions unless

a methodological approach is employed. 1In the
present research a method based in the theory
of Dynamic Programming has been developed using
elements of Graph Theory and Optimization. The
model and its solution is presented using as an
example of application the problem of normaliz-
ing the structural sections of a housing pro-
ject. Application to other areas of building
methodologies are also discussed. A computer
program and numerical illustrative results
complete the presentation of the model, At
present, a stochastic version of the model is
being developed.

Introduction

At the dimensioning" stage of large electri-
cal, mechanical, structural, etc. systems, the
architect frequently faces a number of normali-
zation problems, In fact, at this stage the ~
system will be formed by a large number of
components whose dimensions have been deter-
mined by procedures that in general fail to
recognize the true complexity of the system.

*Formerly, Teaching Associate at the Depart-
ment of Architecture, U.C., Berkeley,
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For example, we possess very powerful methods
to optimize the structural elements of a build-
ing but these procedures do not in general
account for the interaction of the structural
topology and the associated cost of fabrica-
tion and assemblage, and much less do they
account for the interaction of the structure
with other systems composing the entire build-
ing. The same is true in considering a number
of mechanical, electrical, etc., systems,
Clearly, the adoption of the optimum sizes
obtained with those methods will not in general
lead to the optimum design solution of the
entire system, because what is optimum with
respect to one function will be in general
sub-optimal for two or more functions. This
is particularly true when we consider opera~
tive and manufacture costs in addition to
straight forward consideration of cost due to
volume of materials. It is in effect known
that repetition of components in a large sys-
tem yields in general a reduction in fabrica-
tion and assemblage costs. A meaningful step
in the design process is therefore to normal-
ize the dimensions of the elements composing

a system in such a way as to achieve a reduc-
tion in cost. The present paper is devoted

to a methodological treatment of this partic-
ular design stage. We shall consider here the
simplest version of this problem as an example
of a methodological approach that admits con-
siderable generalization in the realm of
building methodology. Assuming that the frac-
tional reduction in cost due to repetition of
a number of elements is known, the problem now
consists in determining the combination of
sizes for which the greatest reduction in cost
is achieved. This is a combinational problem
or vast arithmetic proportions unless a metho-
dological approach is employed. The dynamic
programming algorithm of the allocation pron
lem has been previously pointed out as an
efficient technique for the solution of prob-
lems of this kind in the realm of structural
design [1]. 1In this paper we present a metho-
dological approach for the formulation and the
solution of problems of the present type based
in elements of Graph Theory and Optimization,
This approach has proved to be highly efficient
and easy to teach as it is demonstrated by the
fact that it is the main theme for an under-
graduate interdepartmental course in metho-
dological aspects of design that it is regu-
larly taught by the authors to students of
architecture and engineering at the Berkeley
Campus,

The model and its solution is presented using
as an example of application the problem of
normalizing the structural sections of a hous=
ing project. A computer program and numerical
illustrative results complete the presentation
of the model. At present, a stochastic version
of the model is being developed,



The Model

A gystem containing n components (elements) of
the same category is to be designed to perform
adequately under various conditions. The defi-
nition of adequacy of performance depends on
the type of system under consideration. 1In a
building, for example, the relevant components
might be all the beams of the same length in
the structural frame. The performance of the
system would then be its response to various
loading conditions and the adequacy of response
might be composed of certain requirements on
stress and deflection values, yielding of mate-
rial, or failure of members due to buckling or
fatigue, It is assumed that methods of analy~-
sis and design relevant to the conditions of
adequacy are available to determine the minimum
allowable component sizes, i.e., to select a
set of n components, each of which is just
sufficient to satisfy all conditions of ade-
quate performance. This set of components
represents a design for the system. In many
systems of interest, adequacy of performance

is an increasing function of the amount of
material used, in efficient system components.
Thus, if there exists a finite, discrete set

of m available component sizes (and thus m
different levels of performance) from which to
choose, the selected set of minimum allowable
performance components for the system can be
expressed as

nj components of size j, j=1,2,...,m (&)
with

nj = 1n, the total number of components
in the system
y @)

Lr~TP

J

and this design is the minimum weight design
due to the relationship between performance
and amount of material,

For some classes of systems (e. g.,
structures such as airplanes and spacecraft)
weight is the predominant factor in determining
the ultimate total cost of constructing and
using the system, and thus the minimum-weight
design is also effectively the minimum-cost
design. However, in many other systems the
fabrication costs are equal or even dominant
factors with the material and weight~-penalty
costs, Fabrication costs per component can
often be reduced through normalization of
components, i.e., the manufacture of many
identical components, but the material costs
increase because some components in the system
are then larger or heavier than necessary for
adequate performance, The problem is thus a
smoothing problem of selecting the set of
components that minimizes the total cost by
balancing these two competing effects,

If the m different component sizes are
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arranged in order of decreasing size or weight,
then we define '

c‘j = the cost of one component of size
Jjs assuming only one is fabricated
(J=1s29-..;m) 3)

and
r, (i) = overall fractional cost reduction
J factor for size j if i components
of that size are fabricated
together. “4)

Then the total cost of k_, components of size
j is given by J

k.,J3) =k.c ll-r (k,
a( 5 ) JCJ[ rJ(kJ)] (5)

and the total cost of the system is

m
A= v a(k,,3) 6
= L. J-;J (6)
341

An artificial stratification of the selection
problem is possible because of the separable
form (6) of the total cost function.

The optimization problem of minimizing cost
may then be viewed as an m-stage sequential
component selection process, with constraints on
the selection (decision) imposed by ‘the require-
ments of adequate system performance. These
constraints are given by the previously deter-
mined minimum-performance design (1), (2):

at least n1 components of size 1(the largest)
at least n, components of size 2 or larger

at least n3 components of size 3 or larger

"o

()

at least n components of size m or larger

If the selection begins with the largest size
component, these constraints become

J
r'\
at stage (size) j, N, = ) k.2
ge ( )J:J j Lln (6:))

where k., is the number of components chosen to
be of size j.

The Methodology

In many types of discrete-state, multistage
decision processes, a map or graph is useful

in illustrating the process and visualizing its
solution procedure. If the horizontal axis of
the graph represents successive component sizes



and the vertical axis represents cumulative
number of components (N.) chosen up to and
including size (stage) Jj, then the E;agﬁ_bf
possible combinations of selected elements
appears as in Figure 1. A possible combination
of selected elements (a sequence of decisions
or policy) is represented by a path from point
{0,0) to point (n,m). All possible paths are
bounded by two limiting system designs:

1) the fully~normalized or uniform-component
design (upper bound)

2) the minimum component performance or
minimum-weight design (lower bound).

In terms of coordinates on the graph, for exam-
ple, the paths representing these two designs
can be written as

UNIFORM COMPONENT: (0,0)~ (n,1)- (n,2)
“,..= (n,m)

MINIMUM COMPONENT: ©,0)- (nl,l)-b (n1+n2,2)
<4, .. (n,m)

(€]

Exhaustive enumeration of all allowable paths
in the graph (Figure 1) would be one way of
computing the costs of different system designs
and finding, by direct search, the lowest re-
sulting cost. However, thg number of allowable
paths is of the order of ()™, which makes
direct enumeration computafionally impossible
for large systems.

An approach to multistage analysis called
dynamic programming [2] is ideally suited for
this class of problems because it exploits the
separable nature of the cost function (equation
6) to obtain an efficient recursive solution
procedure, The dynamic programming approach,
which renders much larger problems computa-
tionally solvable than does a direct enumera-
tion approach, will be explained in the follow-
ing section,

The Dynamic Programming Solution
Following the ideas of discrete dynamic pro-
gramming [2], we define

f,(N,) = the minimum cost after selection
J of N, total components from
among j successive sizes. 1o

Then the principle of optimality of dynamic
programming (page 15 of [2]) provides the key
to obtaining the recursion relations needed to
solve this problem. From equation (6), equa-
tion (10) becomes

fj(N.) = minimum

kl’k2""’

. (11)
kj . a(ki,l)

1

Hes-Jje
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Proceeding formally with equation (11), we may
separate the minimum operation to obtain

a(k, li):]
) 1
i=1 2)

£.(N,) = min | minimum

3 Ko [ Ryakgreaaiky

j 1

Then (12) becomes, by separation of the summa-
tion terms,

fj(Nj) = min fa (k,,Jj) fminimum

O I R S

3 1 =1

3-1
2 a(ki,i)} ; ' (13)
i1

From the definition (10) and equation (11),
we finally obtain

fj(Nj) m;ﬁ [a(kj,J) + fj—l(Nj kj)] (14)
J

Upon substitution of (5) and qonsideration of

the constraints (7), (14) can finally be

written as a set of functional recurrence

relations

£, (N,) =nminimum [kjcj 1- Ty (kj)}

osk, sL,
J J
+ £, N‘—k.)] (15)
J—l(J J
(3=2,3,...,m)
where
-1 J
-n- yonp (2 )
LJ_ Nj L ni, ~ ni ij <n (16)
i=1 i=1
and

fl(Nl) = Nlcl[l-rl(Nl)] (initial conditi;:;

The equations (15), (16), and (17) are then
solved successively for each value of j, and at
each value of j for each possible value of N_,
up to the end-point £ (n), which is then the®
minimum cost of the total system. The selected
optimal policy (optimal sequence) of component
sizes is then determined by a trace-back
through the sets of values kK" (N3 which satis-
fied the minima in equation %153 at each stage
j and each level N;. In the following section,
a FORTRAN subroutine computer program is de-
veloped to perform the dynamic programming
solution (15)-(17).

The Computer Program ;
The digital computer solution of the above




general component selection problem may be
accomplished by a FORTRAN subroutine. Define
the following FORTRAN variables:

Data variables -

NBT =number of components in the total
system (n)

NT =number of different component sizes
available (m) !

Data arrays (dimensions) -

COSTF (NT) =cost of one component of each
size, if only one is fabricated
(cj)

CRED (NBT) =overall cost reduction factors
for multiple-component fabri-
cation (r(i))

NBMIN (NT) =number of components of each
type in the minimum weight
design (nj)

Computation and storage arrays (dimensions) -

F(NBT,2) = current stage (col. 2) and pre-
vious stage (col. 1) minimum
cost values (fj(Nj))

IPOL (NBT,NT) =selection policy values
(k;(Nj))

Result or solution array (dimension} -

NBOPT(NT) =number of components of each
size selected to minimize the
total cost of the structure

The minimum cost of the system is located in
F(NBT,1) at the end of execution of the sub-
routine, A complete FORTRAN listing of sub-
routine MCESDP (for minimum cost element
Eelection by gynamic—grogramming)—appears in
Figure 2.

An Example Problem

Consider a three-story, multi-bay building
frame containing 15 beams of the same length
dimension, The structure is to be constructed
from precast, prestressed concrete members.
Some method of hand calculations or a computer
analysis, e.g. SAP (§tructura1 énalysis Pro-
gram) has been used to determine the minimum-
weight design. This design, consisting of
five different beam cross~section sizes, is
given in Table 1,

Costs for each size of member, assuming
only one member of that size is being fabri-
cated, are also given in Table 1. The infor-
mation supplied by the concrete beam manufac-
turers concerning the cost reduction factors
for multiple-beam fabrication is given in
Table 2.
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The solution of this problem is straightfor-
ward. Subroutine MCESDP, coupled with a main
program for Input/Output, finds the minimum-
cost design in ,014 seconds of CDC-6400 central
processor time. (Table 3). The output of the
main program includes Tables 1, 2, and 3.
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5 TYPES,

ELEMENT TYPE DATA (TABLE 1)

ELEMENT COST FOR NUMBER OF ELEMENTS
TYPE ONE ELEMENT IN MIN. WT. DESIGN

1 110.50 3

2 90,00 1

3 88.50 8

4 65.00 1

5 50400 2

COST REDUCTICN FACTORS (TABLE 2)

NUMBER JF SIMILAR

DVERALL COST

15 STRUCTURAL
FOR MINIMUM COST.

ELEMENTS USED  REDUCTION FACTOR
l .
2 .070
3 - T e "_."i"i"o“ ST o e T
4 . 140
5 . 140
6 . 140
7 . 140
8 <140
3 <140
10 140
11 . 140
12 . 140
13 . 140
14 .140
157~ T 10
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SUBROUTINE MCESDPINTsNBTsCOSTF4NBMINJCREDINBOPT 3F 4 I1POL)
R e s e s

c

c SUSBRQUTINE FOR THE MINIMUM-COST SELECTION QF GOMPONENTS OF A SYSTFM

C 3Y DYNAMTC PROGRAMMIMNG

-

PRI NI W F I NI NI I NI I KWK I I I N W I I I I I N IE I I I I I I NN KRR
DIMENSION COSTFINT) JNBMIN(INT) 4 CRFDINRT ) 4NROPT(NT)9yFINBTs2)sIPOLINB

1T.NT)
3 33 33 I I3 I I I I K I I I I I I I I K I I I IE I IE I IE I I N W I I I NI

-
- FIRST STAGE (SI1ZE)
-
FRRNEIEM R ERFER AN E RN N KNI I 0TI 96 033636 36 2 36060606 33606 3 06 00 36 2 0
Tr=NBMINI(Y)
DO L I1=TT,,NBT
ToAL(T,1=T .

1 FT41)=T*COSTF (1Y *#(1e~CRED(T))
R R Y R e a2 S TR T F S R LI T FEE TS
=
s LOCP FOR REMATNING STAGES (2 THRQUGH NT)
-
G a2 Ty e EE I T T X T e e 2

DO 2 U=2.NT
IPR=11

TT=TT+NBMINLY)
s a2 T T R R R e e T s X P e X I T

~
C LOOP FOR ALL ALLOWASLE N{J) VALUES (LEVELS)
s
e E Y e e R e e e s
DO 3 I=TIWNBT
EMIN=F (T,1)
TPOL(I+J)=0

KMAX=1-TPR
2o 26 3 NI WA NI I 2 9 I 36 2 I 26 I IE 6 O I 3636 3 I I IE I I T I I I I IR K I IR XH

-
C LOOP FOR PERFORMING MINIMIZATINN AT EACH POINT IN THE GRAPH (1,J)
-
T L s X et 2 TR X R PR SR L
DO 4 K=1,KMAX
TEST=F{I-Ks11+K#COSTF (I #{1.~CRED(K))
TFITEST.GTLFMINY GO TO 4
FMIN=TEST
TPOL(Is01=K
& CONTINUE
3 FtI.2)=FMIN

S L gy N Ty s 2 s S S R e e e 22
~

c SHIFT VALUES QF MINTMUM-COST FUNCTION TO PREVIOUS COLUMN

~ .

P L L e L s s s s s S SR

DO 6 1=11,NBT
6 F(Is1)=F(1,2)
2 CONTTRUE

(****************’******************************************************
s

TRACE-BACK THROUGH POLICY ARRAY TN OBTAIN NUMBER |
OF COMPONENTS OF EACH TYPE SELECTED |

YN

r****************¥******************************************************
D0 5 J=1,NT .
NBQPTINT+1=J)=TPOL(TLsNT+1-J)

5 I11=11-NBOPTINT+1-1)
RETURN :

END :
FIGURE 2
CRERHEXEREIRERERT N EHRRR A F NN KNI INF R RER R R ERRREH KR EERERTR RXRERRERR
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