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Abstract 
In the design of large electrical, mechanical, 
structural, etc., systems, the architect fre­
quently faces a normalization problem: given a 
system made by a large number of components, a 
procedure, generally a numerical procedure, is 
available for the determination of the minimum 
size required by each one of the components. 
The adoption of the sizes obtained in this 
fashion would then represent the optimum design 
solution in the sense of minimum cost if it 
were not for the well-known fact that repeti­
tion of components in a system yields a reduc­
tion in fabrication and assemblage costs. If 
the fractional reduction in cost due to repe­
tition is assumed to be known for each type of 
component, the problem consists in determining 
the combination of sizes for which the greatest 
reduction is achieved. This is a combinatorial 
problem of vast arithmetic proportions unless 
a methodological approach is employed. In the 
present research a method based in the theory 
of Dynamic Programming has been developed using 
elements of Graph Theory and Optimization. The 
model and its solution is presented using as an 
example of application the problem of normaliz­
ing the structural sections of a housing pro­
ject. Application to other areas of building 
methodologies are also discussed. A computer 
program and numerical illustrative results 
complete the presentation of the model. At 
present, a stochastic version of the model is 
being developed. 

Introduction 
At the "dimensioning" stage of large electri­
cal, mechanical, structural, etc. systems, the 
architect frequently faces a number of normali­
zation problems. In fact, at this stage the 
system will be formed by a large number of 
components whose dimensions have been deter­
mined by procedures that in general fail to 
recognize the true complexity of the system. 
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For example, we possess very powerful methods 
to optimize the structural elements of a build­
ing but these procedures do not in general 
account for the interaction of the structural 
topology and the associated cost of fabrica­
tion and assemblage, and much less do they 
account for the interaction of the structure 
with other systems composing the entire build­
ing. The same is true in considering a number 
of mechanical, electrical, etc., systems. 
Clearly, the adoption of the optimum sizes 
obtained with those methods will not in general 
lead to the optimum design solution of the 
entire system, because what is optimum with 
respect to one function will be in general 
sub-optimal for two or more functions. This 
is particularly true when we consider opera­
tive and manufacture costs in addition to 
straight forward consideration of cost due to 
volume of materials. It is in effect known 
that repetition of components in a large sys­
tem yields in general a reduction in fabrica­
tion and assemblage costs. A meaningful step 
in the design process is therefore to normal­
ize the dimensions of the elements composing 
a system in such a way as to achieve a reduc­
tion in cost. The present paper is devoted 
to a methodological treatment of this partic­
ular design stage. We shall consider here the 
simplest version of this problem as an example 
of a methodological approach that admits con­
siderable generalization in the realm of 
building methodology. Assuming that the frac­
tional reduction in cost due to repetition of 
a number of elements is known, the problem now 
consists in determining the combination of 
sizes for which the greatest reduction in cost 
is achieved. This is a combinational problem 
or vast arithmetic proportions unless a metho­
dological approach is employed. The dyn~ 
programming algorithm of the allocation prob­
lem has been previously pointed out as an 
efficient technique for the solution of prob­
lems of this kind in the realm of structural 
design [1]. In this paper we present a metho­
dological approach for the formulation and the 
solution of problems of the present type based 
in elements of Graph Theory and Optimization. 
This approach has proved to be highly efficient 
and easy to teach as it is demonstrated by the 
fact that it is the main theme for an under­
graduate interdepartmental course in metho­
dological aspects of design that it is regu­
larly taught by the authors to students of 
architecture and engineering at the Berkeley 
Campus. 

The model and its solution is presented using 
as an example of application the problem of 
normalizing the structural sections of a hous­
ing project. A computer program and numerical 
illustrative results complete the presentation 
of the model. At present, a stochastic version 
of the model is being developed. 



The Model 
A system containing n components (elements) of 
the same category is to be designed to perform 
adequately under various conditions. The defi­
nition of adequacy of performance depends on 
the type of system under consideration. In a 
building, for example, the relevant components 
might be all the beams of the same length in 
the structural frame. The performance of the 
system would then be its response to various 
loading conditions and the adequacy of response 
might be composed of certain requirements on 
stress and deflection values, yielding of mate­
rial, or {ailure of members due to buckling or 
fatigue. It is assumed that methods of analy­
sis and design relevant to the conditions of 
adequacy are available to determine the minimum 
allowable component sizes, i.e., to select a 
set of n components, each of which is just 
sufficient to satisfy all conditions of ade­
quate performance. This set of components 
represents a design for the system. In many 
systems of interest, adequacy of performance 
is an increasing function of the amount of 
material used, in efficient system components. 
Thus, if there exists a finite, discrete set 
of m available component sizes (and thus m 
different levels of performance) from which to 
choose, the selected set of minimum allowable 
performance components for the system can be 
expressed as 

nj components of size j, j =1,2, ..• ,m (1) 

with 

n, the total number of components 
in the system 

and this design is the minimum weight design 
due to the relationship between perfor~ 
and amount of material. 

(2) 

For some classes of systems (e. g. , 
structures such as airplanes and spacecraft) 
weight is the predominant factor in determining 
the ultimate total cost of constructing and 
using the system, and thus the minimum-weight 
design is also effectively the minimum-cost 
design. However, in many other systems the 
fabrication costs are equal or even dominant 
factors with the material and weight-penalty 
costs. Fabrication costs per component can 
often be reduced through normalization of 
components, i.e., the manufacture of many 
identical components, but the material costs 
increase because some components in the system 
are then larger or heavier than necessary for 
adequate performance. The problem is thus a 
smoothing problem of selecting the set of 
components that minimizes the total cost by 
balancing these two competing effects. 

If the m different component sizes are 
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arranged in order of decreasing size or weight, 
then we define 

and 

c. 
J 

r. (i) 
J 

the cost of one component of size 
j, assuming only one is fabricated 
(J=1,2, ..• ,m) 

overall fractional cost reduction 
factor for size j if i components 
of that size are fabricated 
together. 

Then the total cost of k
j 

components of size 
j is given by 

a(kJ.,j) = k.c.[l-r.(k.)] 
J J J J 

and the total cost of the system is 

m 

A I a(k. ,j) 
J 

j=l 

An artificial stratification of the selection 
problem is possible because of the separable 
form (6) of the total cost function. 

(3) 

(4) 

(5) 

(6) 

The optimization problem of minimizing cost 
may then be viewed as an m-stage sequential 
component selection process, with constraints on 
the selection (decision) imposed by the require­
ments of adequate system performance. These 
constraints are given by the previously deter­
mined minimum-performance design (1), (2): 

at least nl 
components of size 1 (the largest) 

at least n
2 

components of size 2 or larger 

at least n3 components of size 3 or larger 

(7) 

at least n components of size m or larger m 

If the selection begins with the largest size 
component, these constraints become 

j j 

" \' at stage (size) j, N. L k j ", L n. (8) 
J J 

i=l i=l 

where k. is the number of components chosen to 
be of sIze j. 

The Methodology 
In many types of discrete-state, multistage 
decision processes, a map or graph is useful 
in illustrating the process and Visualizing its 
solution procedure. If the horizontal axis of 
the graph represents successive component sizes 



and the vertical axis represents cumulative 
number of components (N.) chosen up to and 
including size (stage) J j , then the gra~of 
possible combinations of selected elements 
appears as in Figure 1. A possible combination 
of selected elements (a sequence of decisions 
or policy) is represented by a path from point 
(O,~point (n,m). All possible paths are 
bounded by two limiting system designs: 

1) the fully-normalized or uniform-component 
design (upper bound) 

2) the minimum component performance or 
minimum-weight design (lower bound). 

In terms of coordinates on the graph, for exam­
ple, the paths representing these two designs 
can be written as 

UNIFORM COMPONENT: (0,0)-+ (n.l)-+ (n,2) 
-+ • •• -+ (n, m) 

MINIMUM COMPONENT: (0,0)-+ (nl,l)-+ (n l +n2 .2) 
-+ • •• -+ (n ,m) 

(9) 

Exhaustive enumeration of all allowable paths 
in the graph (Figure 1) would be one way of 
computing the costs of different system designs 
and finding. by direct search, the lowest re­
sulting cost. However, the number of allowable 
paths is of the·order of (~)m, which makes 
direct enumeration computa¥ionally impossible 
for large systems. 

An approach to multistage analysis called 
dynamic programming [2] is ideally suited for 
this class of problems because it exploits the 
separable nature of the cost function (equation 
6) to obtain an efficient recursive solution 
procedure. The dynamic programming approach. 
which renders much larger problems computa­
tionally solvable than does a direct enumera­
tion approach, will be explained in the follow­
ing section. 

The Dynamic Programming Solution 
Following the ideas of discrete dynamic pro­
gramming [2]. we define 

the minimum cost after selection 
of N. total components from 
amon~ j successive sizes. (10) 

Then the principle of optimality of dynamic 
programming (page 15 of [2]) provides the key 
to obtaining the recursion relations needed to 
solve this problem. From equation (6), equa­
tion (10) becomes 
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= minimum 
k l ,k2 ····,k j 

j 

" L a (ki ,i) 
i= 1 

(11) 

.Proceeding formally with equation (11), we may 
separate the minimum operation to obtain 

Then (12) becomes. by separation of the summa­
tion terms, 

fj (Nj ) = min b(kj.j)+minimum 
kj [ k l ,k2 ·····kj _l 

I I · (k, • ,ill (13) 

From the definition (10) and equation (11), 
we finally obtain 

fJ.(N
J
.) = min [a(k .• j ) + f. l(N.-k.)] (14) 

k J J- J J 
j 

Upon substitution of (5) and consideration of 
the constraints (7), (14) can 'finally be 
written as a set of functional recurrence 
relations 

f
J
. (N

J
.) = minimum [k . c . [l - r

J
. (k

J
.) } 

oSk SL J J 
j j 

+ f
j

_ l (Nj-kj ) ] 

(j=2,3 •.•. ,m) 

where 

and 

j-l 

Lj=Nj - I ni , 
i=l 

(15) 

(16) 

Nlcl[l-rl(Nl )] (initial condition) 
(17) 

The equations (15), (16), and (17) are then 
solved successively for each value of j, and at 
each value of j for each possible value of N., 
up to the end-point f (n), which is then theJ 

minimum cost of the t~tal system. The selected 
optimal policy (optimal sequence) of component 
sizes is then determined by a trace-back 
through the sets of values k~{N.) which satis­
fied the minima in equation {15' at each stage 
j and each level Nj • In the following section, 
a FORTRAN subroutine computer program is de­
veloped to perform the dynamic programming 
solution (15)- (17) • 

The Computer Program 
The digital computer solution of the above 



general component selection problem may be 
accomplished by a FORTRAN subroutine. Define 
the following FORTRAN variables: 

Data variables-

NBT = number of components in the total 
system (n) 

NT = number of different component sizes 
available (m) 

Data arrays (dimensions)-

COSTF (NT) = cost of one component of each 
size, if only one is fabricated 
(c j) 

CRED(NBT) =overall cost reduction factors 
for multiple-component fabri­
cation (r(i» 

NBMIN (NT) = number of components of each 
type in the minimum weight 
design (n j ) 

Computation and storage arrays (dimensions)­

F(NBT,2) = current stage (col. 2) and pre­
vious stage (col. 1) minimum 
cost values (fj(N

j
» 

I POL (NBT ,NT) = selection policy values 
(k;CNj» 

Resul t or solution array (dimension)­

NBOPT(NT) =number of components of each 
size selected to minimize the 
total cost of the structure 

The m1n1mum cost of the system is located in 
F(NBT,l) at the end of execution of the sub­
routine. A complete FORTRAN listing of sub­
routine MCESDP (for minimum cost element 
selection by ~ynamic-Erogra~ing)-appears in 
Figure 2. 

An Example Problem 
Consider a three-story, multi-bay building 
frame containing 15 beams of the same length 
dimension. The structure is to be constructed 
from precast, prestressed concrete members. 
Some method of hand calculations or a computer 
analysis, e.g. SAP (~tructural ~nalysis ~ro­

gram) has been used to determine the minimum­
weight design. This design, consisting of 
five different beam cross-section sizes, is 
given in Table 1. 

Costs for each size of member, assuming 
only one member of that size is being fabri­
cated, are also given in Table 1. The infor­
mation supplied by the concrete beam manufac­
turers concerning the cost reduction factors 
for multiple-beam fabrication is given in 
Table 2. 
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The solution of this problem is straightfor­
ward. Subroutine MCESDP, coupled with a main 
program for Input/Output, finds the minimum­
cost design in -.014 seconds of CDC-6400 central 
processor time_ (Table 3). The output of the 
main program includes Tables 1, 2, and 3. 
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*********************************************** 
DYNAMIC PROGRAMMING SELfCTION OF 15 STRUCTURAL 
ELE"1ENTS FROM AMONG 5 TYPES, FOR MINIMUM COST. 
*********************************************** 

ElEi~ENT 

TYPE 

1 
2 
3 
4 
'5 

fLEMENT TYPE DATA (TABLE 1) 

COST fOR 
ONE ELE-1E"H 

110.50 
90.00 
8 d. 50 
65.00 

NUMBER OF ELEMENTS 
IN MIN. WT. DESIGN ------

5 1).00 

3 
1 
8 
1 
2 ---_::..---_:..----------==--===-=------------------------_:::.-_------------

CuST REDUCTICN F_ACTO~S (TABLE 2) 

----- - --------------------------

NUMBER JF SIMILAR 
ELE""'E-'HS USED 

l]VE~ALl COST 
REDUCTIO~ FACTOR 

.070 
1 
2 
"3 
4 
'5 
6 
7 
!3 

_ .. --.~ --.. ------- ·--;11--0· 

-------9--

10 
1 1 
12 
11 
14 ------------------ 1"5"---

.140 

.140 

.140 

.140 

.140 ."14-0------------------ --

.140 

.140 

.140 

.140 

.140 
.--- ----~-·14-0-----·--- ---.-- ~----
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SUBROUTINE MCESDPfNT.N6T.COSTF.N6MIN.CR~D.NBOPT.F.IPOL} 
C*~**************~·***************************************************** 
c 
C 
C 

SUSPOUTTNE. ~OR TfolE. fHNIMUM-COST SELECTTO"l OF COMPONENTS OF A 5YSTI;\.1 
9Y DYNAMTC PROGRAMMI~G 

r****************~··***************************************************** 
DIMENSION (OSTFI~T).NqMTNINT}.rQFD(NQT).NQOPTINTI.F(NBT.21.IPOLINA 

IT.NTl 
,***************~~****************************************************** 

,****************'****************************************************** 
T T=~16MT"l(1) 
DO 1 T = T T .~. BT 
T DI"IL ( T • 1 ) = T 

1 I"IT,')=T*COSTFIll*I1.-CREDIT) 
r****************~'.~**************************************************** ,.. 
,.. LOOP FOR REM~TNrNG STAG~S (2 THROUGH NTI 

r****************~****************************************************** 
00 2. J=2..NT' 
I PR= IT 
TT=TT+~la""THIJ) 

,****************1****************************************************** 

r LOOD FOR dLL ALLOI"~8L;: NI J I VALUES I LEIIELS I 

r****************~****************************************************** 
DO 3 I=TI.NBT' 
C'MTN=I"IT.ll 
T POL I 1 oJ ) =0 
KHflX=I-TPIt 

r**************** •• *********************.******************************* ,.. 
r LOOP FOR PER~ORMING MTNIMIZATION AT I;drH POINT IN THE ~RAPH (I.Jl , 
r*****************·***************************************************** 

DO 4 K=l.KMAX 
TEST=FIT-~,'I+K*COSTFIJ)*ll.-CREOIKII 
TFITEST.GT.~MINI GO TO 4 
fMTN=TtST 
TPOLI!.,))=K 

4 CONT T ~'UE. 
3 FII.')~FMT~ 

r*********************************************************************** 

r SHIFT VALUES OF MTNTMUM-COST FUNCTION TO PREVIOUS COLUMN 

r****************·****************************************************** 
DO 6 l=tI .N8T 

6 FI%.11=FII.2) 
2. CONT T MUE. 

r**************~*.****************************************************** 
r 

r TRACE-SACK Tf-IROUGH POL ICV ARqAV T0 OSTAIN NlJt~eER 
r OF COMPONENTS OF EACH TYPE SELE'CTED 

~****************t****************************************************** 
M 5 J=l.NT 
NBOPT(NT+l-~'=TPOL~II.HT+l-J) 

~ IJ=tl-N80PT(NT~1-J) 
RETURN 
EI'IO 

r FIGURE 2 
r****************w.***************************************************** 
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