AN EVALUATION OF SPACE PLANNING METHODOLOGIES

Elliott E. Dudnik

Assistant Professor of Architecture University of Illinois at Chicago Circle Department of Architecture Chicago, Illinois 60680

Robert Krawczyk

C. F. Murphy and Associates Chicago, Illinois

Abstract

While numerous algorithms and approaches have been suggested and applied to the problem of space-planning there has not been any systematic comparison or evaluation of these methods. Such an evaluation is important because the spatial configurations produced by such methods vary considerably. In this paper the major space planning techniques, as well as several new approaches and modifications to existing methods, are described, compared and evaluated. The use and consequences of certain options and/or modifications to the basic methods are included and evaluated. The results for each method using an identical problem are given, indicating the comparative speed and optimality of each approach, as well as the final plans generated. The implications of these results and their relationship to the design process are discussed.

Introduction

The past decade has seen a variety of techniques for evaluating and/or automating the space planning process. To a great extent, these allocation techniques have become very familiar to many designers and their utilization has become more widespread. Design literature consistently includes applications, extensions, or computer program descriptions which rely on any number of different space allocation algorithms. The resulting spatial configurations or floor plans are generally presented with discussion reserved only for the end product. Usually, a particular algorithm has been implemented, with certain other related decisions inherent to the chosen approach, and the system or solutions built up from this initial decision. There is little explanation, however, as to why the particular technique has been chosen nor why certain secondary decisions related to the implementation of this approach have been made. The results of any of the many different techniques are not, however, the same. Even the secondary decisions that arise as a consequence of any algorithm yield widely varying solutions. It has, however, rarely been the case where the results or consequences of using each of the different approaches have been carefully evaluated, analyzed or compared.

This paper takes each of the many space allocation techniques available plus several new approaches and compares and evaluates them with respect to one another.

Identical example problems are used to clearly demonstrate the differences in results that occur in each case. Comparisons are made of computing time as well as the "scores" of each resulting solution. For every technique used, all possible sub-options are explained and demonstrated to clearly illustrate the consequences of their use. Thus, when the random generating approach is discussed, the implications of a technique which randomly assigns locations to spaces is compared to one that switches locations of two randomly chosen spaces and also to one that only performs the switch if the new random location is within a chosen distance of other elements. Similarly, various approaches and options within the framework of assignment techniques are discussed and compared to one another. Thus, one may see the consequences of various approaches or rules to the spatial location and choice of each incoming element to the plan and/or its dependence toward any or all previously located elements. All approaches are evaluated and compared to one another, and not only to their related generic types.

The purpose of this paper is to both clearly define and illustrate the various techniques available for space planning, to carefully and systematically demonstrate the differences that arise from use of each method, and to evaluate these results. This paper shows that the initial choice of algorithm does have a profound affect upon the resulting design and that the consequences are such as to warrant more serious consideration of certain methods for particular situations. This paper also, in illustrating these techniques presents several new approaches, extensions and modifications of space planning algorithms, heretofore, not presented in the literature. These new techniques are clearly recognizable as logical extension of the choices or decisions that would occur during the manual design process but ignored or avoided previously in the automation of the process.

A Review of Space Planning Techniques

A number of space-planning or allocation methods have, at various times, been developed or presented. For the past ten years, design literature has contained many applications of space-planning techniques as well as extensions of these methods. Comprehensive summaries of these various approaches are given by Mitchell⁽¹⁾ and Eastman⁽²⁾. Mitchell not only provides an extensive bibliography of space-planning, but also a systematic summary and taxonomy of space-planning techniques which will be referred to in this paper.

With few exceptions, the bulk of space-planning techniques fall into the category of assignment techniques. Essentially, this is an approach which considers the spaceplanning problem as a combinatorial problem of assigning the various required spatial elements to discrete locations or modules in the available space in such a way as to satisfy a given set of constraints and to optimize some objective function. In general, this objective function relates to the distance between elements and some type of interaction function. This interaction may be expressed as one or more weighted values with either an objective (travel cost, trip volume) or subjective (relative importance, observed hierarchy) basis.

While other approaches to space-planning have begun to emerge recently, many of these are either still in conceptual form and have not been implemented success-fully or may not necessarily seek to optimize or improve upon a plan. An example of the former may be found in Grason's proposal⁽³⁾ for use of graph theory, which seems

only successful for small planar graphs. As for the latter situation, the overlay techniques used by Grant⁽⁴⁾ or Ward⁽⁵⁾ locate elements on the basis of greatest "utility" or "suitability", but this in fact does not seek to improve the relationships between the parts of the plan as much as it seeks to resolve conflicts between the available space and each individual element. The work of Johnson, et al⁽⁶⁾ appears closer to resolving the difficulty of other techniques by being best able to internally represent the relationships, the boundary conditions, and geometry of the elements and the space. At present the major difficulty appears to be the large amounts of computer storage and time required for solution and the absence of a "closed-form" problem, thereby preventing the possibility of obtaining a single "best" solution but rather producing several alternative results.

One returns, therefore, to consideration of the large group of assignment techniques. They are important for a number of reasons. First, the bulk of work and literature is centered in this area, mainly because of the relative ease of problem statement and structure. Secondly, the algorithms that can be and have been developed for obtaining solutions by these approaches are such that computation time is generally extremely fast. This has generally led to continued reliance upon and use of these methods and less tendency to seek new or further develop more complex, costlier, and more time-consuming techniques. Thirdly, despite the relatively large amount of activity and writings devoted to these techniques, little if no objective evaluation or assessment has been made of these techniques. Finally, the structure of the assignment model, with its clearly defined objective function provides the means for such an evaluation. This is not to say, however, that other approaches or methods cannot be evaluated. However, many of the other methods, some of which rely only on relationship of element to site of available space, e.g., the overlay techniques, and do not necessarily possess a set of interelemental relationship, could not be "scored" in a similar method and might necessitate a greater reliance upon subjective evaluation.

It should be noted that the general area of assignment technique comprises a wide range of methods. The generic grouping is often assigned to any approach that bears some resemblance to the model description of Brotchie⁽⁷⁾ or possesses one or more of the attributes or characteristics of that model. It is necessary therefore to clearly define and classify the different methods within a more detailed framework.

Assignment Techniques

Within the broad classification of assignment techniques, one may first divide all approaches into two distinct classes: 1) constructive or generative procedures and 2) improvement procedures. The constructive procedures begin with an empty field and locate each element of the plan successively in accordance with some given set of rules or algorithm. The improvement procedures take an initial configuration and attempt to modify it so as to produce a better or improved configuration. While this classification provides some means of categorizing the various techniques, a further breakdown is possible by consideration of the algorithms used to improve or generate the plans. These algorithms will be considered in the context of each of the two classes.

A. <u>Constructive or Generative Procedures</u>. As noted above, the constructive procedures are typified by an "ex nihilo" approach to the space-planning problem.

That is, the technique begins with an empty field ("tabula rasa") and locates the elements in accordance with some algorithm. The technique for choosing which element should "enter" the plan and for determining its location provides the means for classification.

1. <u>Random Generation Method</u>. The simplest and most obvious method for generation or construction of floor plans is by random choice of elements and/or locations. The technique employed is a simple one: using a random number generator, successively generate a pair of X- and Y-coordinates for each element on the list of spaces. These coordinates will determine the location of that element on the plan. To prevent an element from being placed in a location already occupied by a previously placed element, a check is made for occupancy. If the space is not vacant, a new set of coordinates are generated. The method may be continued indefinitely with a scoring algorithm used to determine which solutions should be "saved" or printed if one wishes to avoid seeing every solution.

2. Ordered Scores (Assignment Method). This method, the simplest and least sophisticated use of the affinity interaction matrix, builds the plan by choosing the elements in accordance with an ordered list based on total interaction scores. The element with the highest score enters the plan first followed by the next highest scoring element and so forth. The positions of incoming elements are tested for best score within a given radius or distance from previously placed elements. This approach is essentially that of Whitehead and Elders⁽⁸⁾ and is essentially that used by Lee and Moore in CORELAP⁽⁹⁾, although the latter method does not adhere strictly to the ordered interaction scores in certain cases.

3. <u>Polyomino Assembly (Assignment One)</u>. This method is based on the polymino assembly procedure described by Mitchell and Dillon⁽¹⁰⁾. The choice of elements to enter a plan is made on the basis of interaction with elements already placed and the location on the basis of adjacency to the placed elements. In particular the choice and location of the n + 1th chosen element is based upon interaction with the nth chosen element of the plan. The method may be modified somewhat by the following options:

a. <u>Positioned Elements</u>. Choice of element is based on interaction with all elements already placed on the plan and theelement with highest interaction score individually to the most of the placed elements is chosen for entry.

b. <u>Number of Dependent Elements</u>. Positioning of an element chosen by the previous option may be restricted to only locations around the n elements with which it had the greatest interaction.

c. <u>Interacted Elements</u>. Choice of element to be placed is again chosen on the basis of interaction with positioned elements. The one with the highest score to the most elements is next to enter the plan. Location, however, is only possible next to those elements of the plan with which the incoming element had highest interaction scores.

4. <u>Nuclear Growth (Assignment Two)</u>. This method is a new approach to the problem of space-planning. Selection of an incoming element is based upon the scores of the available elements to the cluster of elements previously positioned. That is, if three elements have been placed, the choice of a fourth element is made on the basis of the element having the highest total score to all three of these elements. Position is tested at all points adjacent to these elements. The method differs from the original assignment technique in that this method chooses on the basis of only interaction with <u>positioned</u> elements rather than from a list ordered by total scores. It also differs from the polyomino approach by using <u>total</u> interaction with all positioned elements rather than only with the last element(s). The method may be modified by allowing for:

a. <u>Number of Dependent Elements</u>. Rather than interaction with <u>all pre-</u>viously located elements, choice of element may be restricted to only the last n elements to have entered the plan.

B. <u>Improvement Procedures</u>. As noted earlier, the improvement procedures are those which systematically seek to improve upon the score of the plan constructed in the previous cycle. Elements are <u>re-positioned</u> in an effort to achieve a better score. In general, efforts that fail are disregarded or discarded and computation ceases when no further improvement is possible. Classification is made by the technique used for obtaining improvement.

I. <u>Random Switch</u>. This method takes the initial plan and seeks improvement by randomly switching any two elements of the plan matrix. To avoid switching empty space elements or a non-empty space with an empty space, the restriction is included that only if two non-empty spaces are within a given radius of the empty space will a switch be permitted. This rule also prevents a plan with "detached" spaces and thereby maintains contiguity of plan.

2. <u>Ordered Scores and Alternative Check</u>. This method utilizes the same technique as the first generative technique (Ordered Scores - Assignment). At the end of the plan generation phase, however, a systematic switch of every occupied element with every other occupied element of the space is made in an effort at improvement. A more sophisticated approach to this method uses the option:

a. <u>Alternative Check</u>. This option performs a systematic switch of plan elements seeking improvement at each cycle of the plan generation, i.e., as each new element enters the plan, switches are performed seeking overall plan improvement.

3. <u>Single Switch</u>. This method systematically switches every element of the initial plan with every other element of the plan. Again, to avoid non-contiguity, the rules prescribed for the random switch are invoked. The method also permits K passes through the plan, where a pass is defined as every position switched with every other position (a maximum of n^2 switches for a non-empty space).

4. <u>Computerized Relative Allocation of Facilities Technique (CRAFT)</u>. This method has been thoroughly documented(TT) and several extensions proposed(12,3) Basically, elements are interchanged to achieve improvement on the basis of meeting at least one of three criteria: 1) they are the same size, 2) they have a common border, and/or 3) they border on a third element. At each cycle the interchange performed according to these rules is that producing the greatest improvement in score. The procedure ceases when no further improvement is possible.

There are, therefore, eight different assignment space-planning methods which can be modified by invoking the several options. In addition, all the generative methods may include the options:

i. <u>Value Only</u>. This option calculates interaction scores on the basis of relational value X distance, as opposed to:

ii. <u>Value-Area</u>. This option calculates interaction scores on the basis of relational value X distance. This option is useful when elements are of varied size and importance is desired for larger plan elements so that they would enter the plan initially.

Evaluation of the Space-Planning Methods

The various methods and options for space-planning described above were evaluated using as a test problem, a middle school (junior high school). The data for the school including room types, areas, and relationship matrix are shown in Fig. 1. The choice of this building type and its associated program for testing allows for many clearly defined functions and relationships. The number of spaces (twenty-five) permits the possibility of sufficient variation in the final plan configurations and scores which would not be possible with less complex building types or those with a smaller number of spaces.

Using the information given and a set of computer programs developed for each of the methods described above, test runs were performed to assess and evaluate each method. Since scoring was possible on the basis of value X distance in all cases, comparitive scores were obtained. In addition, computer times were obtained for each run to assess speed and cost as well. The scores and computer times for each method and option used are given in Table 1.

With a major objective of any space-planning technique being the achievement of the best possible results without generating excessive costs, it is interesting to note that the variation between the final scores of the various methods is less than 5%. More importantly, the time differential between the worst and best solution is more than forty-fold! This means that for a sacrifice of only 5% in the efficiency of plan, a <u>savings</u> of nearly 20 minutes of computer time (23.2 minutes versus .52 minutes) is achieved. Interestingly enough, a solution only 2% "worse" than the "best" solution can be achieved in 1.02 minutes.

It is surprising to find even with a relatively "small" building, that the solutions generated by the various methods generate so great a variety of solutions. While certain options of each method fail to produce much, if any, change a wide range of

FIGURE I - INPUT DATA FOR SAMPLE TEST PROBLEM

5 <u>1</u> 61	6162	0103 7	r 164	5165 7	61.64 7	6167 7	61 GA 7	511A 5	GIHE	G1VA	61.65	G1UA 5	G1MA	616Y	GISV	GICF	- GIST	GIKT 3	6150	GIAD	្បូក	GŢĂV	сінс	GIGC
••••	6262 9	9263	6264 7	6265 7	62 64 7	6267 7	6269 7	621A.	62HF 5	G2VA	62.6S	G ZUA	G2 MA	626¥	62 5 V	62C F	6251	62KT	625D	62AD	GZLR	GZAV	G2HC	6260
	••	6363 9	G 364	5365 7	6366 7	6 36 7 7	6368 7	G 31 A	G3HF	G3VA	6365	G3JA	G3 MA	GIGY	635V	G3CF	G357 3	Gikt	6350	6340	63LR	GJAV	бзис	6360
			F.4G4	3465	6464	6467	6468	GALA	G4 HF	GAVA	64.65	GAJA	G5 44	GAGY	, 645V	GACE	G4ST		6450	6440	GAIR	GAAV	GAN	- 6407
••	••	•:•	d:	7	7	7	7	5	5	6	6	5	5	3	3	4	7	٦	4	5	4	7	5	5
	••••	•••	•••	3565	6566 7	6567 7	656A 7	651A. 5	65 HE	65VA	656S	65JA 5	65 MA	G 56 Y 3	G5 SV 3	65CF	655T 3	G5KT	G 4 5D	GSAD 5	GSLR 8	G5AV 7	65HC 5	65GC
• • • •		•••••	••••	••••	66 66	6667	6669	GOTA	GEHE	GOVA	GAGS	G GUA	GEMA	G6GY	Gesv	660 F	66 ST	GAKT	Gesn	GEAD	GALR	G6AV	GEHC	GAGE
					· - · · ·	6767	6768	67TA	G7HE	GTVA	GTGS	G.TUA	G7 MA	G7GY	GTSV	67CF	6751	G7KT	6750	G7AD	671.R	GTAV	67.80	6766
••	••	••	••	••	••	9	7	5	5	6	6	5	6	3	3	4	3	3	4	5	8	7	5	5
	••••	••••	••••	•••	•••	•••	GAGR	5 G BEA	68HE 5	GBVA 6	68 GS	GâUA 5	GBMA 5	686¥ 3	685V 3	GAC F	GAST	GAKT	6850 4	GRAD	GALR	GBAV 7	GRHC 5	6 86C 5
	••••	••••	••••	••••	••••	•	••••	TAFA.	TAHE	1 AV A 4	TAGS	TAJA 6	TAMA 6	1 AGY	IASV	TACE	TAST 2	TAKT	taso '	- FAAD -	IALP 2	1449	TAHC	TAGC
NUMB	F P	SPACE (ODE	AR	F.A.	SPACE	DISCRI	PTION	HÊHÊ	HÉVĂ	HEGS	HEUA	HEMA	HEGY	HESV	HECF	HEST	HERT	HESD	HEAD	HELE	HEAV	HEHC	HEGC
									9	4	5	6	•	3	3	2		2	2	4	3	3	5	,
1		61		320	.0	GFN-L	FN-CLUS	TER-1	••••	9	VAGS	6	7	VAGY 3	VASV 3	3	5	3	3	4	ALP.	6	3	VAGC 3
2	è ·	62		320	• 0	GFN≁L	FN-CLUS	TER-2	••••		GSGS	GSJA	GSMA 5	G SG Y	GSSV	GSC F	GSST 3	GSKT	6550	GSAD	64LR	GSAV 6	GSHC.	GSEC
4		63		350	•0	GFN-L	EN-CLUS	TFR-3				JAJA	UAMA	UAGY	UASV	UACF	UAST	UART	UASD	UAAD	UALP	UAAV	UAHC	UAGC
4		64		320	•0	GEN-L	EN-CLUS	TER-4	••	••	••	9	7	3	3	3	3	3	5		5	4	4	5
Ĵ		65		320	• •	GFN-L	EN-CLUS	768-4		••••	•••	,	9	Z Z	2	3	6	3	3	3	MALR 3	3	MAHC	MAGC 3
,		67		320	.0	GEN-L	EN-CLUS	TER-7	••••	••••		••••		GYGY 9	GYSV	GYEF	GYST	GYRY 7	6750	GYAD	GYLP	GVAV	GYHC	GYGC
,		Ģ.Я		320	.0	GEN-L	FN-CLU	TER-8							SVSV	SVCF	SVST	SVKT	5950	SVAD	SVEP	SVAV	SVHC	SVGC
٩		ŢĂ		470	.0	INDUS	TRIAL-	RTS	••		••	••	••	••	9			7	6	7	2	2	6	6
10		HE		385	. 0	HIT ME-	FCOMNIC	s	•••	••••	•••	•••	•••	••••		9	6	8	8	7	2	CFAV 3	CFHC 4	C FGC
11		ÂV .		336	.0	VI SUA	L-ARTS		••••	• • • •		••••	••••	••••	••••	••••	STST	STRT	STSD 5	STAD	STLR	STAV 5	STHC	STOC
12		r. \$		470	• 0	GENER	AL-SCI	NCE									••••	RTRT	*TSD	KTAD	KTLR	RTAV	KTHE	KTGC
13		UA		176	.0	UNLFI	FD-APT	-C 0440N	••	••	••	••	••	••	••	••	••	9		6	2	2	4	3
.1,4		HA Au		477	.5	MUSIC	-AREA		•••	••••	•,•	•••		•••	••••	•••	•••	•••	.9	5 DAD 7	SOL P	SDAV 3	SOHC 4	SDGC 6
1.5		6¥.		370	-0	GYMNI	: 5 1 UM- 51	RVICES	••••	••••	••••	••••	••••	••••		• • • •	••••	••••	••••	ADAD	ADLR	ADAV	ADHC	ADGC
17		C.F.		435		CAFET	ORTUN									••••					LPLR	LRAV	LAHC	LAGE
1.8		\$T		95	.0	STAG	- PROJE	TION	••	••	••	••	•••	••	••	••	••	••	••	•.•	9	•	3	3
1,9		87		60	.0	KITC	IEN-SER	FRY		••••	•••			•••	•••	•••	••••	••••		••••	••••	.9	AVHC	AVGC 3
50		\$P		90	, õ	STAF	-01NIN	G-LOUNGE	••••	••••	·	••••	••••	••••		••••	••••	••••	••••		••••	••••	HEHC	HCGC
21		A Đ		147	•.5	ADML	NISTRAT	ION		••••				••••			••••							90 90
27		ĻŔ		792	. 2	LIBR	ARY-RES	NURCE	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	٩
23		A.V		6.0	.0	AUDT	D-VI SUA	L-SERV																
24	e.	HC		45	•9	GUID	ANCE-CO	UNSEL																
		1.1																						

TABLE I

Generative Methods

Method.	<u>Options</u>			Score	Time
Ordered S	cores				
	No options			57827	.40
	Check alter	natives at completion		57779	5.38
	Check alter	natives at each cycle		56664	24.20
Polyomino	Assembly				
	3 dependent	elements/Interacted/Area +	Value	58924	.49
	3 dependent	elements/Positioned/Area +	Value	592 8	.52
	3 dependent	elements/Interacted/Value		58510	.52
	3 dependent	elements/Positioned/Value		58304	.49
	6 d ependent	elements/Interacted/Area +	Value	58578	•57 [·]
	6 dependent	elements/Positioned/Area +	Value	57789	1.02
	6 dependent	elements/Interacted/Value		57619	1.02
	6 dependent	elements/Positioned/Value		57922	1.04
	9 dependent	elements/Interacted/Area +	Value	58578	1.02
	9 dependent	elements/Positioned/Area +	Value	57809	1.09
	9 dependent	elements/Interacted/Value		57671	1.05
	9 dependent	elements/Positioned/Value		57671	1.05
	12 dependent	elements/Interacted/Area +	Value	58578	1.03
	12 dependent	elements/Positioned/Area +	Value	57977	1.13
	12 dependent	elements/interacted/Value		57671	1.08
	12 dependent	elements/Positioned/Value		57671	1.14
	15 dependent	elements/Interacted/Area +	Value	58578	1.07
	15 dependent	elements/Positioned/Area +	Value	57977	1.23
	15 dependent	elements/Interacted/Value		57671	1.14
	15 dependent	elements/Positioned/Value		57671	1.20
Nuclear G	rowth				
	3 dependent	elements/Area + Value		57734	1.27
	3 dependent	elements/Value only		57771	1.24
	6 dependent	elements/Area + Value		58306	1.28
	6 dependent	elements/Value		57710	1.23
	9 dependent	elements/Area + Value		58426	1.26
	9 dependent	elements/Value		57825	1.23
	12 dependent	elements/Area + Value		58426	1.25
	12 dependent	elements/Value		57896	1.23
	15 dependent	elements/Area + Value		58426	1.25
	15 dependent	elements/Value		57920	1.22
а	II dependent	elements/Area + Value		58426	1.26
a a	II dependent	elements/Value		57920	1.23

Improvement Methods

Single Random Switch	Switch	Score
	0 600 1200 8800 2400 3000 3450 3825 6000	76387 59210 57528 57018 57018 56919 56794 56782 56782 56782

Time = 37.37

Single Switch	Option .	Score	Time
	l Pass	57899	7.42
	2 Passes	56905	15.34
	3 Passes	56356	23.20
	4 Passes	56356	30.68
	5 Passes	56356	38.49
CRAFT			
	5 x 5 Matrix	58058	23.27
	6 x 6 Matrix	58103	78.78

different configurations are possible. If one carefully inspects the final solutions shown in Fig. 2, it is clear that a wide number of alternatives have been obtained using these different approaches. Methods such as the random generating routine produce a great number of plans, of course, but not many are optimal. The more sophisticated generative techniques do, however, differ in their final product. It can be seen in Fig. 3 that the growth patterns resulting from the different approaches vary sufficiently to produce these variations, but the scores tend to indicate that near optimality has been achieved.

Conclusions

It is probably difficult to denote any one of the many space-planning methods as "best". Nearly all of the methods that have been evaluated here have certain attribute that make them valuable. Even the random generating or random switching routines, both of which are seemingly based on an "unscientific" approach, are valuable to the designer in producing alternatives not foreseeable by a strictly rigorous, rational approach. Clearly, however, if certain methods do little to improve upon a final configuration, but are much more time consuming, there is some doubt as to their values and consideration should be given the more efficient approaches.

On a rational, philosophical basis, one may prefer certain methods of space-planning because the technique more closely approaches the actual design process. The second and third assignment techniques (Polyomino Assembly and Nuclear Growth) are the most sophisticated methods and come closest, in this regard, to a designers process. Despite the fact that scores were not as "good" as that produced by the switching routines, these two techniques have a rational appeal and appear to justify one's faith in the approaches taken by the speed with which they achieve solutions. Clearly, a direct route to solution is more satisfying than a trial-and-error solution.

It should be noted that the improvement techniques, particularly CRAFT, are valuable to any designer by demonstrating alternatives to the initial plan. This is particularly valuable when the initial configuration is one that has been carefully developed rather than arbitrary as in this paper. Unfortunately, however, since the lower bound on the score for a plan is unknown, these methods may perform thousands of needless operations and tests, producing no real improvements. This is the greatest disadvantage to these methods along with the associated lengthy computation times.

For the designer, the implications of these results are three-fold. First, methods exist and can be further refined that can produce good and efficient architectural plans. The adjacency of related elements into well-defined clusters seems to indicate that these methods not only provide efficient plans, but also that these plans are quite similar to those traditional design methods achieved. Secondly, the ability for certain space-planning techniques to quickly generate numerous efficient alternative solutions to a given program and set of criteria provides the possibility for a richer variety of architectural solutions available for investigation than would be possible by manual methods. Finally, and most importantly, the results of this evaluation indicate that many of the different space-planning techniques produce solutions that are all as nearly efficient despite fundamental

	อาจาล อาจาล อาจาอ	8040808 8080808 8080808 8940808	50 50 5 50 50 5 50 50 5 50 50 5	575 575 575 575	TS TS TS TS			амамамама Мамарариан Мамарариан Мамарариан Мамарариан Мамарариан		50505 50505 50505	57575 57575 57575	
UAUAIJAU IJAUAUJAU UAUAUAU IJAUAUAU IJAUAUAU	MAMAMAMAMA MAMAMAMAMA MAMAMAMAMA MAMAMAMA MAMAMAMA MAMAMAMA MAMAMAMA	GYGYGYGYGYGYGYGYG GYGYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYGYG GYGYGYGYGYGYG GYGYGYGYGYG GYGYGYGYG GYGYGYGYG GYGYGYG GYGYG GYGYG GYGYG GYGYG GYGYG GY	6* \$56*656 6* 0* 75 55 65 6* 6* 6* 6 6* 6* 6* 6* 6 6* 6* 6* 6* 6 6* 6* 6* 6 5 6* 6 5	542424 24244 24444 244444 2444444	2424 2424 2424 2424 2424 2424 2424 242		656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 656565656 656565656 656565656 656565656 656565656 656565656 656565656 656565656 656565656 656565656 656565656 656565656 656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 6565656565656 6565656565656 6565656565656 65656565656 65656565656 65656565656 65656565656 65656565656 6565656565656 6565656565656 656565656565656 65656565656 65656565656 65656565656 65656565656 65656565656 65656565656 6565656565656 6565656565656 6565656565656 6565656565656 6565656565656565656 65	мамачанана мамачанана мамачанана мамачана sg 555555555 55 55555555 56 55555555 56 55555555	646464646 6464646466 6464646466 6464646466 6464646466	5 05 D5 G7G7G7G7G G7G7G7G7G G7G7G7G7G G7G7G7G7	51515 6 YGYGYGYGYGYGYG 6 YGYGYGYGYGYGYG 6 YGYGYGYGYGYGYG 6 YGYGYGYGYGYGYG 6 YGYGYGYGYGYGYG 6 YGYGYGYGYGYGYG 7 YGYGYGYGYGYGYG	
	636363636363636 6363636363636 636363636	LOIDIRIDIRIDIRI IRIDIRIDIRI IRIDIRIDIRI IRIDIRID	63 63 63 63 63 63 6 63 63 63 63 63 63 6 63 63 63 63 63 63 6 63 63 63 63 63 63 63 63 63 63 63 63 63 6	CFCFCFC CFCFCFC CFCFCFC CFCFCFC CFCFCFC CFCFCFC CFCFCFC IAIA141	IFCF IFCF IFCF IFCF IFCF IFCF	KTXT RTXT XTKT	GSCSGSGSG VAVAVAVAV VAVAVAVAV VAVAVAVAV VAVAVAVA	SG G5G5G5G5G G2G2G2G2G G2G7G2G2G G2G2G2G2G G2G2G2G2	G4G4G4G4G LRIRLRLRLRLRL LRIRLRLRLRLR LRIRLRLRLR LRIRLRRLQL LRIRLRRLQL LRIRLRLRLQL LRIRLRLRLRL LRIRLRIRLRLR G1 61 61 00 00 00 00	67676767676 6666666666 666666666 6666666	6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 CFC FC FC FC FC CFC FC FC FC FC CFC FC FC FC FC	KTKT KTKT KTKT
HEHEHEHEHE HEHEHEHEHE HEHEHEHEHE HEHEHEHEHE HEHEHEHEHE	G2G202G2G G20202G2G G20202G2G G2G202G2G G2G202G2G G2G202G2G G2G202G2G G2G202G2G G2G202G2G	G1G1G1G1G G1G1G1G1G G1G1G1G1G G1G1G1G1G	G4G4G4G4G G4G4G4G4G G4G4G4G4G4G G4G4G4G4G4G G4G7G7G7G7	TATATAT TATATAT TATATAT TATATAT TATATAT	ATAT ATAT ATAT ATAT ATAT			AI G3G3G3G3G AI G3G3G3G3G AI G3G3G3G3G AI G3G3G3G3G AI G3G3G3G3G AI G3G3G3G3G3G AI AI	61 61 61 61 6 61 61 61 61 6	GBG8G8G8G GBG8G8G8G GBG8G8G8G8G GBG8G8G8G8	00000 00000 00000 00000	
44 44 44 44	GBGAGAGAG GAGAGAGAG GAGAGAGAG GBGBGAGBG	7454040 8464646 8464646 8464646 8464666 846466	G76767676 G76767676 G76767676 G76767676 G76767676	нснс			HE HE HE HE HE HE	ненененене Ненененене Ненененене Ненененен	UAUAUAU UAUAUAU UAUAUAU UAUAUAU UAUAUAU	ADADADA ADADADA ADADADA ADADADA	202420222 202420222 202420222 2024202020 2024202020 202420202020	
a) Or	dered S	cores 566	564				b) Po	lyomino	Assembly	57619	9	
10 400 400 10 4 104 (14 17 4 (14 (14 17 4 (14 (14 17 4 (14 (14 17 4 (14 (14		W G\$05050505050 W C505050505050 W C5050505050 W C5050505050 W C5050505050 W C5050505050 Q C5050505050 Q C5050505050 Q C5050505050 Q C5050505050	526262 626252 526252 526252 625252 625252 626252	626 626 626 626 726 726 726			AVAV AVAV AVAV	Афалалар Сласаларова Сабаларова Сабаларова Сабаларова Сабаларова Сабаларова	646464646 6464646 6464646 6464646 6464646 6464646 6464646	87878 87878 87878 87878	SD SD S SD SD S SD SD S SD SD S SD SD S	
તરંત્ર પ્રતર્થતા સર્વે કાર્યત્વે કાર્ય સર્વે કાર્ય સ્વાર્ય સર્વે કાર્ય કાર્ય કાર્ય સર્વે કાર્ય સ્વાર્ય કાર્ય સ્વાર્ય સ્વાર્ય કાર્ય કાર્ય સ્વાર્ય કાર્ય કાર્ય સ્વાર્ય સ્વાર્ય કાર્ય કાર્ય કાર્ય કાર્ય સ્વાર્ય સ્વાર્ય કાર્ય સ્વાર્ય સ્	848 GA CA CA CA 842 GA CA CA CA 848 GA CA CA CA 848 CA CA CA CA 848 CA CA CA CA 848 GA CA CA CA 848 GA CA CA CA CA 844	ec eletetete e eletetete e eletetete e eletetete e eletetete e eletetetete	[R[P[R[R [R[R]R[R [R[P[R]R [R[P[R]R] [P]P[R]R [P]P[R]P [R]P[R]P [R]P[R]P [R]P[R]P	L#LŘ(R LPLRLP LPLRLP LPLRLR LRLRLR LRLRLP LRLRLP LPLRLP LPLRLP	5 40 40 40 40 40 40 64 7 40 40	060 286 266 266 266	V 4 V 4 V 4 V 4 V V 4 V 4 V 4 V V 4 V 4	636363636 636763636 6363763636 636363636	LALALALALALALALALALALALALALALALALALALA	686868686 GRG868686 GRG868686 GRG868686 GRG868686 GRG868686 GRG868686	C FC FC FC FC FC F C FC FC FC FC FC	KŤRT KTRT KŤKŤ
1 A [4] 4]; 5 2 6 1 8 1 7 4 7 5 1 8 7 7 5 7 5	Alet conorse Miet conorse Miet conorse Miet conorse Miet conorse Miet Miet conorse Miet	00000000000000000000000000000000000000	ចុំភ្លឺត្តភ្លឺ ក្នុងក្នុងក្នុ ភូមិភូមិភ្ល ភូមិភូមិភ្ល ភូមិភូមិភ្ល ភូមិភូមិភ្ល ភូមិភូមិភ្ល ភូមិភូមិភ្ល ភូមិភូមិភ្ល ភូមិភូមិភ្ល ភូមិភូមិភ្ល ភូមិភូមិភូមិភ្ល ភូមិភូមិភូមិភ្ល ភូមិភូមិភូមិភូមិភ្ល ភូមិភូមិភូមិភូមិភូមិភូមិភូមិភូមិភូមិភូមិ	686 680 686 686 686 686	6767671 6767671 6767677 676767671 6767671 6767671	576 576 576 576 576 576	4 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	676767676 676767676 676767676 676767676	6*6565656 6*6565646 6*6565646 6*65656 6*65656 6*65656 6*65656	616161616 616161616 616161616 616161616	AYA YAYA YAYAYAYAYA GYA YAYA YAYA YAYA GYA YAYA YA	STSTS STSTS STSTS STSTS STSTS
바운바로,바로,바로,바 바운바로,바로,바 바운바로,바로,바 바운바로,바로,바 바운바로,바로,바로,바로, 바운바로,바로,바로,바로,바로, 바운바로,바로,바로,바로,바로,바로, 바운바로,바로,바로,바로,바로,바로, 바운바로,바로,바로,바로,바로,바로,바로, 바운바로,바로,바로,바로,바로,바로,바로, 바운바로,바로,바로,바로,바로,바로,바로, 바운바로,바로,바로,바로,바로,바로,바로, 바운바로,바로,바로,바로,바로,바로,바로, 바운바로,바로,바로,바로,바로,바로,바 바운바로,바로,바로,바로,바로,바 바운바로,바로,바로,바로,바로,바 바운바로,바로,바로,바로,바 바운바로,바로,바로,바로,바 바운바로,바로,바로,바 바운바로,바로,바로,바 바운,바로,바로,바 바운,바로,바로,바 바운,바로,바로,바 바운,바로,바로,바 바운,바로,바 바운,바로,바 바운,바로,바 바운,바로,바 바운,바로,바 바 바 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	የሐም የሐም ለቦልጥሌንን የሐም ለተለባለሳ የሐም ለባለካለስ የሐም የሐም	CARCACARACARA LARCARACARACARA LARCARACARACARA LARCARARACARACA RUCARARACARACARA RUCARARACARACARA RUCARARARACARA RUCARARARARA LARCARARARARA LARCARARARARA	 	6404 6404 6404 6404 6404 6404 6404 6404	50 50 505 0 505 0	5	114(141141) 114(14(14)) 114(14(14)) 134(14(14)) 114(14(14))	05050505050 05050505050 050505050 050505050 050505050 05050505050 05050505050 05050505050 05050505050 05050505050 050505050 050505050 050505050 050505050 0505050 0505050 0505050 0505050 0505050 0505050 0505050 0505050 0505050 000000	676267625 676262626 676262626 676767626 676767626 6762626 6762626	8080808 8083808 8080808 8080808	5 N2	
нсыг Нгнс Нгнг	55553 55553 55553	CACACACACA CACACACACA CACACACACA CACACACACACA CACACACACACA CA	5757 5757 5757 5757	5. 6 5.	. # T # T # T # T * T # T			HENENENENE HENENENE HENENENE HENENENE HENENE HENENE HENE HENE HENE HENE HENE HENE HENE HENE HENE	TATATATAT TATATATATAT TATATATATAT TATATATATAT TATATATATAT TATATATAT TATATATAT	HCHC HCHC HCHC		
c) S	ingle R	andom Swit	ch 56	5782			d) Si	ngle Swi	tch 5635	56		

FIGURE 2 - TYPICAL FINAL CONFIGURATIONS

8. SPACE PLANNING TECHNIQUES / 425

Ordered Scores	POLYOMENO ASSEMDLY CURRENT PLAN HODIFIED WITH JIVE ADDITION OF THE AS BE ENTERT	Nuclear Growth current easy monified with the ancitter of the of the senter
Committee all and model and a second se		
	*	64
No. I Carlo State Stat	G7 L*	17 L#
	63 G]	43 GL
	1313 CUMBENT PLAN CONFIGURATION HAS A TOTAL INTERACTION VALUE OF	TADE COMMENT OF THE COMPLETED AND THE TALENCESCON AFOR ON 1402
Same after foreigner for and a colde instruction of a second	a) After 5th element entered	l nlan
	a) Aller Jill erement entored	i piùn
CORPORT FLAN WONTFIED WITH THE IDDITION OF THE GA FLEMENT	CURRENT PLAN HOOISIFO WITH THE ADDITION OF THE AV ELEWHIT	CORRENT BITH MUDIELED MILH INE VUDILION OF INE TO ELEMENT.
	53 GA 57	C* 54 68
Na dy 65	62 1# 66	62 T# 84
G5 E# G3	63 61 GA	G1. 53 G7.
62 61 64		AV
GF		
CURRENT PLAN CONFIGURATION HAS & TOTAL INTERACTION VALUE OF	4012 CLARFNT PLAN CONFIGURATION HAS A TOTAL INTERACTION VELUE OF	-9544 - CHERENT - BLAN CONFIGURATION HAS & TOTAL [NTERRETION VALUE] NO
	b) After 10th element entere	ed plan
CURRENT PLAN WORFFLED WITH THE ADDITION OF THE VA FLENENT	CURRENT PLAN HODIFIED WITH THE ADDITION OF THE HE BLENENT	COMPART NEAR WINITEL, SITH THE ADDITION OF THE IN FLENENT.
	WL AV	28
	65 65 64 67	114. C4 C4 C8
MA OY C"	VA OF LR GO	¥4 67 1 *
VA GS LA G3 CF	T# 63 62 68	HA CH 0, 07
62 n1 64 14	42	AS 40
CURRENT PLAN CONFIGURATION HAS & TOTAL THTERACTION VALUE OF	23143 CHRENT PLAN CONTINUEATION HAS A TOTAL INTERACTION VALUE OF	29428 CURRENT ALAN CONFIGURATION MAS & YOTAL 141868CT10N VALUE OF 23227
	c) After 15th element ontor	ad plan
	CALLER INTERPORT	
CURPENT PLAN MODIFIED WITH THE ADDITION OF THE SD ELEMENT	CUPPENT PLAN HOOLFIED WITH THE ADDITION OF THE CF ELEMENT	CUBRENT PLAN MODIFIED WITH THE ANDITION OF THE SO SLEWENT
AD 50		58 HF 40 118 55 56 55 55
104 H4 GY C4 SV	V4 62 L# 66 CF	VA 12 18 54 66
VA 65 14 63 FF	14 G3 G1 G8 G4	44 61 61 67 50
HE G2 G1 G4 IA	HC HF UA AD	nt AV
68 64 67		
		· · ·
FURRENT PLAN CONFIGURATION HAS & TOTAL INTERACTION VALUE OF	A 39619 CUPARMT PLAN CONFIGURATION HAS A TOTAL INTERACTION VALUE OF	VELLE ELEVENT OF AN ENVENTION WAS A TOTAL INTERACTION VALUE OF 5000
CORRECT DEAN ANDEFTED WITH THE ANALYSING OF THE ST SECOND		
Constant and a second s		
	MA ZU EN ET	7 a HF 40
57 40 SA GC	av 30 31 65 65 64 67 6V	UA 64 64 66 60
14 48 GY 65 SV	VA 162 19 10 66 12F x1	24 GP 17 GA HC
VA 05 19 53 CF AT	TA 63 61 68 6C	*A (1) GL (7 *P
HE 62 01 54 14	NE HE UA AD SV	GT #¥ KY T¥
4V 68 66 67 HC		* #* e#
CURRENT PLAN CONFIGURATION HAS & TOTAL INTERACTION VALUE OF	F STREE CURRENT PLAN COMPTONENTION HAS & TOTAL INTERACTION VALUE OF	THE CURPENT PLAN CONFIGURATION HAS & THTAL INTERACTION VALUE OF \$771
	e) After 25th element enter	ed plan
	FIGURE 3 - TYPICAL GROWTH PA	TTERNS

differences in approach. This implies that the designer may choose any method which comes closest to his particular design approach and philosophy and know that his solutions will not suffer in comparison to any other approach.

This final point is most interesting if one looks at the process by which the methods construct the solutions. The elements entering a plan at any stage and their location are often different as a direct result of the problem criteria and the method used. Despite this fact, and independent of type of problem, the final configurations still more than adequately meet the rquirements and standards generally expected of a good architectural solution. The broad implications of this apparent independence of good design solution to individual method may well be the most important result of this evaluation and indicate the continued need for investigation of the entire process of design.

Notes

References

¹Mitchell, William, "Notes on Approaches to Computer-Aided Space Planning", Proceedings of the Kentucky Workshop on Computer Applications to Environmental Design (ed. M. Kennedy), Lexington, Department of Architecture, University of Kentucky, 1971.

²Eastman, Charles, "Logical Methods of Building Design: A Synthesis and Review", Institute of Physical Planning Research Report No. 28, Carnegie-Mellon University, December 1971.

³Grason, John, "A Dual Linear Graph Representation for Space Filling Location Problems of the Floor Plan Type", in Emerging Methods in Environmental Design and Planning (ed. G. Moore), Massachusetts Institute of Technology Press, 1970.

- ⁴Grant, Donald,"Combining Proximity Criteria with Nature-of-Spot Criteria in Architectural and Urban Design Space Planning Problems Using a Computer-Aided Space Allocation Technique: A Proposed Technique and an Example of its Application", Proceedings of the Ninth Design Automation Workshop, Dallas, Association for Computing Machinery, 1972.
- ⁵Ward, W. S., D. P. Grant, and A. J. Chapman, "A PL/I Program for Computer-Aided Architectural and Planning Space Allocation", Proceedings of the Fifth Annual Urban Symposium of the Association for Computing Machinery, New York, Association for Computing Machinery, 1970.
- ⁶Johnson, Timothy, et al, "IMAGE: An Interactive Graphics Based Computer System for Multi-Constrained Spatial Synthesis", Massachusetts Institute of Technology, Department of Architecture, 1971.

⁷Brotchie, John, "A General Space Planning Model", Management Science, volume 16, number 3, 1969.

- ⁸Whitehead, B. and M. Z. Elders, "An Approach to the Optimum Layout of Single-Story Buildings", Architects Journal, June 17, 1964.
- ⁹Lee, R.B. and J. M. Moore, "CORELAP" Computerized Relationship Layout Planning", Journal of Industrial Engineering, volume 18, number 3, March 1967.
- 10Mitchell, William and Robert Dillon, "A Polyomino Assembly Procedure for Architectural Floor Planning", Proceedings of the Third Environmental Design Research Association Conference, University of California at Los Angeles, School of Architecture and Planning, January 1972.
- 11 Armour, G. C. and E. S. Buffa, "A Heuristic Algorithm and Simulation Approach to the Relative Allocation of Facilities", Management Science, volume 9, number 2, January 1963.
- ¹²Lew, Paul and Peter Brown, "Evaluation and Modification of CRAFT for Architectural Methodology", in Emerging Methods in Environmental Design and Planning (ed. G. Moore), Massachusetts Institute of Technology Press, 1970.
- ¹³Rohn, Joachim, "The CRAFT Program: Improvements and Proposed Improvements", SIGSPAC Bulletin, volume 4, number 3, June 1970.