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PHOTOMETRIC UNITS AND NOMENCLATURE.
BY EDWARD B. ROSA.

The subject of photometric units and nomenclature has at-
tracted some attention recently in the technical press, and a wish
has been expressed by more than one writer that there might
come into use a more systematic and uniformly accepted nomen-
clature. Hering, who has given the subject a good deal of at-
tention and has published some valuable articles on it, remarks
that many writers are vague in their expressions, using such
terms as intensity, quantity, brightness, illumination, flux, etc., in
quite diiferent senses. He says:

Moreover, the application of these useful laws (of light distribution)
would be much better understood if we had a clearer physical concep-
tion of what these various quantities really mean, instead of merely
calling them by indefinite names.

The following discussion is an attempt io bring out the physical
meaning of the various quantities referred to, and to show that
some of the names of units that have been objected to are really
useful and contribute to clear thinking. Many of the theorems
derived are not new, but they are nevertheless useful in develop-
ing the desired relations between the various photometric quanti-
ties. Acknowledgment is made to Blondel, Palaz, Liebenthal,
Hering, Kennelly, Sharp, Hyde, Jones and others, whose writ-
ings and discussions have done much to develop the subject.

In what follows some of the names are used in a different
sense from that ordinarily obtaining, and slight changes have
been made in some of the symbols. These changes are in the
interest of a morc systematic arrangement, and it is hoped they
may not be found confusing.

GENERAL DISCUSSION AND DERIVATION OF FORMULAS.

1. Point source—We start with the idea of a luminous flux
radiating from a point source. Experiment shows that the illu-
mination produced by such a source varies inversely as the
square of the distance from the source. We define the illumina-
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tion as the quantity of the luminous flux falling upon a unit of
area. :

A point source of light of intensity I produces a luminous flux
in every direction, the numerical value of which at any given
distance is proportional to the intensity I and inversely pro-
portional to the square of the distance. Thus putting E for the
llumination at a distance 7

I

' E = S (1)
If the light source is at the center of a sphere, the entire inner
surface is uniformly illuminated; the light may be said to flow
out uniformly in all directions, and the space to be filled with
a luminous flux. The total flux falling on the inner surface of
the sphere is the product of the illumination, or flux per unit
of area, E, times the total area. Putting F for the total luminous
flux it follows that

F = 477°E
or, by equation (1)

F — 4ol (2)
The intensity 1 is measured in candles the flux F in hunens,
and the distance » in centimeters. In practice 7 is often meas-
ured in meters or in feet. Thus from a point source of intensity
I candles, there is a luminous flux 4=1 lumens. This is analogous
to the flux of 4« lines of magnetic force from each unit of mag-
netism, and of 4« lines of electric force from each unit of elec-
tricity, in electrostatics.

The flux density is the luminous flux per unit of area nor-
mal to the flux, or the total flux F over an area divided by the
, or ax when it is variable.

S A

If the source is not a point but a small sphere of radius q,
the flux 4«1 passes out from a radiant surface 4ma2. Thus the
flux density of radiation or the specific radiation, is

F qnl I
Eplp— = -5 = .

S ¥;'_r?~— a

area S; thus the flux density is -

11t is proposed to call the new value of the American candle, which is the same as
the English candle and the French bougie decimale, and which is also used by several
other countries, the International candle.
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Thus, we may speak generally of the luminous radiation at any
point in space, and of the flux density of such radiation. If
it falls on a material surface the incident flux density is the
illumination E ; as it comes from a luminous or other radiating
or diffusing surface, the flux density is the radiation, E'. Al-
though E and E’ are quantities of the same nature, it is con-
venient thus to distinguish them, as we shall see farther on.

The luminous flux density in space is analogous to electric dis-
placement in electrostatics, the illumination on a material  sur-
face is analogous to surface density of electric charge. We think
of an electric displacement as occurring everywhere in space
about an electric charge, but a surface density o occurs only
where there is a material conducting body on which the lines of
electric force terminate. In the same way the terms luminous
flux and flux density apply generally. The radiation is the flux
density at the source of the flux, and the iliumination is the flux
density or flux per unit of area on the surface where the luminous
flux is received.

2. DISTINCTION BETWEEN LUMINOUS FLUX AND ENERGY.

The total luminous flux F is not to be confused with the total
energy flowing from a luminous body. Luminous flux, or light
as we ordinarily say, is the physical stimulus which applied to
the retina produces the sensation of light. It is equal to the
radiant power multiplied by the stimulus coefficient. This stimu-
lus coefficient is different for every different wave frequency or
wave length, and is of course zero for all frequencies outside
the visible spectrum. Hence, if W, is the power (expressed in
watts) for unit of wave length of the spectrum, and K, is the
stimulus coefficient or luminous cfficicncy whose value varies with
the wave length A, we have for the total power radiated from a
body

W = g W, dA
and for the luminous flux
Az
F=\ Ki\W,dx
Ay

where A, and A, are the wave lengths at the limits of the visible
spectrum.
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As the values of K, throughout the spectrum are not accurately
known, it is not possible to calculate F in general. But by meas-
uring W in watts and F in lumens, we can determine the ratio
of the luminous flux to the radiant power in any particular case.
One may properly say that luminous flux is due to and is always
associated with radiant power measured in watts: but the state-
ment sometimes made that luminous flux and radiant power can
be converted into one another like feet and inches is misleading;
for, as stated above, the conversion factor, the stimulus coefficient
or luminous efficiency, is not a constant like the ratio of feet to
inches, but is variable, having a different value for every different
wave length in the visible spectrum and falling to zero outside
the visible spectrum.

3. DEFINITION OF INTENSITY.

If the source is not symmetrical, but sends out a total luminous
flux F unequally in different directions, then the mean value of
the intensity is called the mean spherical intensity, and its value
is

I, ——. (3

We thus define the mean spherical intensity with respect to the
total flux; and similarly, the intensity I in any particular direc-
tion is the ratio of the flux through a small solid angle in that
direction to the angle. Thus

F . .
I= I being a solid angle,

or I :g , do being an infinitesimal solid angle.

[ )
~
-~
g

In the case of a point source or unit sphere radiating equally
in all directions, the intensity I is defined as the flux through a
unit of solid angle, or steradian, thatis, I = F when o = 1. This

is an angle subtended by Z:? of a spherical surface, and in the

case of a conical angle its section through the apex is a plane
angle of 65° 327 28"
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4. UNIT DISC.

An elementary disc dS of brightness ¢ gives an illumination

at P, Fig. 1, equal to
edS cos € Q cos €
EP = ,'3 - - r‘l .

Where Q = edS is the quantity of light on the disc.
Integrating this over the hemisphere within which the whole
radiation is confined, we have the total flux,

2

277" sin € cos € de

F—Q =

= [wQ sin’ 6]0: =7Q — =], (5)

Thus, the total luminous flux F from a small plane disc is = times
the quantity of light Q on the disc, and alsc .= times the maximum
intensity I,, normal to the disc. The average intensity through-
out the hemisphere is one-half of the maximum intensity (xl,
divided by 2r) and the mean spherical intensity is one-fourth I,.
Thus we have, since I, = ¥I,.

F ===, = 4, (6)
That is, the total flux F is 4« times the mean spherical intensity
as with a point source or uniform sphere. In the case of the
disc, the spherical reduction factor is hence 4. We must there-
fore carefully distinguish in the various forms of light sources
between the mean spherical intensity I,, the maximum intensity
I,, and the intensity in some particular direction I.

5. EXTENDED SOURCE. CIRCULAR DISC.

Let dS be an element of a plane radiating surface of specific light
intensity (or brightness) e, defined by the equation

I = edS.

That is, the intensity I is equal to the product of ¢ into the small
surface dS. 'Thus, ¢ is the value of the intensity I when the
surface is unity, and is the quantity of light per unit of area
measured in candles. Thus the intensity I would be measured
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by comparing it experimentally with a standard light source, and
it is equal to the intensity of a point source or unit sphere which
produces the same illumination on a given test screen (of a
photometer). Thus, while we define the intensity of a light source
as the luminous flux per unit solid angle, we determine it by
comparison with a concrete standard by means of the illumina-
tion produced on a test screen at a convenient distance, using
a photometer and employing the law of inverse squares.
In Fig. 2 the illumination at P, in the normal to dS is
-
(4

while the illumination at P,, the angles of emergence and in-
cidence being e and 1 respectively is

edS cos € cos 7

B, — S 0508t )

7

The cosine law is assumed to hold exactly for both surfaces.

To calculate the illumination due to a circular disc of bright--
ness (4. e. specific light intensity) e and radius @ on a small plane
area P, normal to the axis of the disc at distance » we integrate
the effect of each elementary circular ring of the disc. Thus, in
equation (7), putting dS = 2rrdx,

@

2wxdx COS € COS 7
E=c¢ : -

(7 4+ &%)
0
Since cos € = cos 7 == — ,f .
1 AL a2
2xdx -7
E = =e FEy ) (8"
[ 7’ a [ 7
— el — ——— p— _—— e —
T 7+ i ],, eyt 7 + a"]
o= S Q.
! - a 7 a 7 4 a®’

where Q is the product of the surface of the disc into the specific
intensity e, and is the total quantity of light upon the disc meas-
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[

ured in candles. If the disc were very small Q would be the
same as the intensity I of the source; but for an extended source
we must distinguish: between the equivalent intensity I and the
surface integral of the specific intensity, which is Q. The latter
we have called the quantity of light upon the disc; it is propor-
tional to the total luminous flux F coming from the extended
source, and is equal to F/x, equation (5). Q and F really meas-
ure the same thing, except that Q is located on the source and is
measured in candles, while F is located in the surrounding space
and is measured in lumens; their ratio is constant as F = =(Q)
always.'

In the case of the disc above mentioned, the illumination E
on a small plane normal to the axis is proportional to the total
quantity of light Q on the extended source (the circular disc)
and inversely proportional to the square of the distance d from
P, to the edge of disc. This holds true for all distances » from
zero to infinity. Thus the laww of inverse squares holds gener-
ally for the illumination along its axis due to a circular disc of
any size, but the distance is measured, not to the center of the
disc, but to the edge.

Thus we have

E = %; for a point source or a unit disc,”
and E == (% for an extended disc. (8a)

1 The total quantity of electricity on a disc of area S is equal to the integral of the
surface density o over the area. Thus

Q:Sms

= oS when o is uniform.

The brightness or specific light intensity ¢ of a source corresponds to the surface density
of electricity o, and the total quantity of light over a surface is, in the same way, the
surface integral of e. Thus

Q= ‘edS
== £S5 when ¢ is uniform over the area S.

In the case of a sphere, the surface S =4wma?. Therefore, for the spherical source
Q = 4ma’e, whereas the intensity I = na’. That is, the intensity I of a spherical source
is one-fourth of Q, and is equal to the light on a disc of radius @ and brightness ¢. That
is, the intensity of the sphere is equivalent to that of a disc of the same diameter, and the
same brightness, for points at a great distance.

2 By unit disc or unit sphere is meant a disc or sphere whose linear dimensions are
negligible in comparison with the distance from source to receiver.
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To illustrate the rate of variation of the illumination with the
distance, leta = 1,7, = 1,7, — &.
d? T2
Q we
A 26
Thus in the first case the distance is 5 times less and the illu-
mination is 13 times more instead of 25 times more, as it would
be if the light Q were all concentrated at the center of the disc.
If r = o, the illumination is we or twice as much as at P,, and
not infinite as it would be at zero distance from a point source.
This theorem is useful in measuring the radiation from walls,
as the radiating area may be quite large and the photometer
relatively near.

Q e

In the first case for the point P,, E, —

In the second case for the point P,. E, =

6. INFINITE PLANE,

The radiation from an infinite plane S upon a unit area of a
parallel plane T' is found by integrating equation (8’) to infinity.
Thus

L 2xdx.rt [ —? ]” .
E = me 4y we ], = we. (9)

Thus the flux density or ilumination at any point P on the T
plane is = times the brightness or specific light intensity ¢ on the
radiating plane S, and is independent of the distance r.

From each unit of area of S having a specific light intensity
e, the total flux is =c, as shown in (5) above. The resultant
flux at all points is the same as though the total flux w¢ from each
unit of arca of S was confined to a cylindrical tube of unit area
perpendicular to S, in which case the flux density would of
course be constant at all sections, that is at all distances.

7- INFINITE CYLINDER.

In a similar manner we may consider the flux from an infinite
circular cylinder of uniform specific intensity ¢, and radius a.

The flux coming from unit length of the cylinder is e times
the area. Hence F — 2z”a¢; whereas the flux falling on the
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inner surface of a concentric cylinder of radius 7, is E times the }
area, E being the illumination. Hence, for a unit of length of |
the cylinder F = 2xrE. Therefore, ]
— 52 (10)

r

E — T2¢
Thus the illumination due to an infinite cylinder varies inversely 3
as the distance. 'This is intermediate between the case of the
point source, for which E is inversely as 7%, and the infinite plane, |
where E is independent of the distance; that is, proportional to *
7°. - :
The quantity Q for the luminous cylinder is e times the surface. ]
Therefore the quantity per unit of length is ’
Q, = 2xae (11) 3
The total luminous flux F, as stated above, is 2a%ae. Hence the °
total flux per unit of length F,, is = times the quantity or ;
F, = #Q,.
or, for any portion (or the whole) of an infinite cylinder of :
uniform specific intensity, the total flux is = times the quantity; ;
that is,
= Q) (12)

as shown above for a circuiar disc.

8. UNIT LENGTH OF CYLINDER.

Suppose a light source in the form of a very long cylinder of
radius ¢ and uniform specific intensity e. It is desired to deter-
mine experimentally its total luminous flux F. Suppose one has
measured by means of a photometer the equivalent intensity I, of
unit length of the cylinder, (screening the photometer from all
but a short section of the cylinder): we are to calculate the
total flux F from I,. The unit length of cylinder will produce
the same illumination at a distance as 2 rectangular plane of
breadth 2a and height unity of specific intensity ¢ equal to that
of the surface of the cylinder. Hence the equivalent intensity
I, is equal to 2ae and the illumination produced on a photometer-
screen at distance 7 is
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The quantity of light on the cylinder per unit of length is e
times the surface or 2rae; and the total flux F, is =« times the

quantity.
Thus we have
F, = 2x%e
I, = 2ae
FI — 71'2Il (l)

Thus to obtain the total luminous flux F, from the measured
value of the equivalent intensity of a unit of length of the
luminous cylinder we multiply this intensity I, by #?, instead of
multiplying by 4= as in the case of a sphere.

The spherical reduction factor of a short cylinder (the convex
surface only being luminous) is therefore #2/4r = =/4 = 0.785.
This would be nearly true for an incandescent lamp having a
single, straight filament. The value for a hairpin filament would
be only slightly larger.

If the cylinder is quite long, we should then get the total flux
F by multiplying F, by the length of the cylinder. This demon-
stration is of course based on the assumption that the cosine
law holds for the cylinder. If the source is a long tube, like
the Moore light, the result would be subject to any modification
dependent on its departure from the cosine law.

Thus while the total flux F is always = times the quantity Q
of the source, it is not always 4« times the intensity. It
is 4= times the intensity I for a point source or sphere, #°L
times the equivalent intensity I, (measuced at a relatively great
distance) of unit length of a long cylinder, L being the length,
and =S times the equivalent intensity I, of unit of area of a plane,
S being the area of the plane.

Tt is, however, always 4= times the mean spherical intensity
of the given source. The illumination produced by a short cy-
linder is approximately inversely proportional to the square of
the distance. For all distances greater than five times the length,
the departures are not greater than o.2 per cent. in a particular
case worked out by Hyde; the diameter of the cylinder in this
case was one-tenth the length. The exact expression for the illu-
mination due to a finite cylinder is not simple, and the calculation
tedious.

et A
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9. CASE OF LARGE SPIIERE.

If a surface S, (suppose a portion of a spherical surface of
radius 7,) has a specific light intensity (brightness) ¢ and sub-
tends a small solid angle e, the illumination which it produces at
Pis

e 2
7 1 1’]

E —

= ew. (14)

A second surface S, of the same specific intensity will produce the
same illumination at P provided it subtends the same angle w.
A third surface, S,, at any angle will also produce the same
illumination at P if it has the same specific intensity ¢ and sub-
tends the same solid angle w.  For the radiation of each element
ds,; is

edS, 05 € — ewr,

C € -
3 > 2
rB r3

as before. So also with the curved surface S,. In every case
the greater distance from P or the inclinat’on of the angular posi-
tion is compensated by the greater area included within the given
solid angle.

Let us calculate the illumination at P due to a large luminous
sphere of radius e and specific intensity e, » being the distance
from P to the center of the sphere. Let the solid angle APB
subtended at P by the sphere be subdivided into a large number
of elementary solid angles. Fach of the latter encloses an area,
as S,, on the surface of the sphere, and also a corresponding
area S,’, on the circular disc AB. As we have just seen, the
illumination produced at P by each spherical area S,, S,, etc., is
exactly the same as that produced by the corresponding plane
areas S, S,/ etc., of the disc, if the specific light intensity e is
the same for the disc as for the sphere. Therefore, the illumina-
tion at P due to the entire sphere is the same as that due to the
disc AB, and we can calculate the latter by formula (8a). That
is,

Y

where Q) is the quantity of light on the disc and d is the distance
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AP from the point P to the edge of the disc. Q is equal to e
times the area of the disc, or

Q = w(a cos 0)*.¢

d = 7rcos 0

d.’! rl
R I,
= %% = (13)

where Q, is the quantity of light on the sphere —: gma’e and is
constant for all distances, and I, is the intensity of the equivalent
point source. Therefore, the illumination produced by a sphere
of any size is inversely proportional to the square of the dis-
tance measured from its center, and is equal to the intensity of a
point source (or unit sphere) having the same total amount of
light divided by the square of the distance. In other words, the
inverse square law holds just as rigorously for large spheres as
for points, (always, of course, assuming the cosine law to hold
for the spherical surfaces, and the specific intensity ¢ to be uni-
form over the sphere). When P comes very near to the sur-
face the area AB of the sphere available for illuminating P is
very small, but the distance is just enough less to counterbalance
‘When P comes up to the surface, » = @, and

E = =¢

the same as for an infinite plane, to which the sphere is equiva-
lent when the distance from the surface is reduced to zero.

The same result is reached more simply as follows:

A luminous sphere of radius & and uniform specific light in-
tensity e gives off a total flux F — 4#a® X we — 4a*a’e. This
produces an illumination on the inner surface of any concen-
tric sphere, which by symmetry will be uniform over any spheri-
cal surface and F = 4«%E.

ac I
B g e

r I 4

Therefore, the illumination produced by a sphere of uniform .
specific intensity e is inversely proportional to the square of the
distance from the center for all distances, from the surface of
the sphere to infinity.
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10. RECIPROCAIL RELATIONS.

From what precedes we see that the illumination at any point P
due to the hollow hemisphere ACB is the same as that due to the
circular disc AOB. The latter is

. wa'e .

E API . (I())
When OP is reduced to zero, the illumination due to the disc is
me¢, and hence the illumination at O on an elementary plane area
in the diametrical plane is = times the specific intensity e of the
surface of the sphere. We have already seen that the total flux
from a unit of surface of intensity e is me. Hence the total flux
through unit area S at O, due to the hemisphere, is equal to
the total flux through the hemisphere due to the luminous unit
area S, the specific intensity ¢ being the same in each case.

This is a particular case of a more general proposition, namely ;
the flux due to any surface S passing through an element dS
is equal to the flux due to the latier passing through the former,
the specific intensity being the same in each case.

As shown above, the illumination E at P, due to S,, is equal
to ew where ¢ is the specific intensity of S, and o is the solid
" angle subtended at P, by S,, this is independent of the shape of
S, or its distance from P,. The flux F passing through dS at P,
is therefore

F-- YedmdS cos 0, over the area of S,. Or

F = edS gu’w cos 0. (17)
Similarly, the flux due to dS at P, passing through S, is

F ‘aiS cos 0 do

edS Scos 6 do.

In the integration, every element dw of the solid angle is to be
multiplied by the cosine of the angle it makes with the normal to
the area dS.

As the same theorem holds for the elementary areas P, and P,,
etc., it holds for their sum, and hence for a finite surface S,.
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Hence we see generally that the luminous flux due to a surface
S, passing through S, is cqual to the luminous flux due to S,
passing through Sr, the specific intensities e being the same in
each case. This is analogous to the theorem that the magnetic
flux due to a magnetic shell S, which passed through a second
shell S., is equal to that part of the magnetic flux of S, which
passes through S,, the strength of the shells being supposed the
same. Or, again, the number of lines of force due to unit cur-
rent in an electric circuit S, passing through S, is equal to the
number of lines of force due to unit current in S, passing through
S;. It follows from the above that in any closed surface of
uniform specific intensity e, the flux passing out from any por-
tion S, is equal to that received from the remainder of the sur-
face, S,.
II. IIOLLOW SPIIERE.

Suppose a hollow sphere of uniform surface having a coeffi-

cient of diffuse reflection m.
I — #2 == absorption.
Let E = illumination at S.
E' =: mE — radiation from S.

e= T — specific intensity or brightness of S.
K

The flux falling on S, due to S is,
€SS, cos’d  mE S8, cos’ ¢

S, dE, = — o . (18)
But 7 = 2a cos ¢ 1'
¥ = 44’ cos’ ¢ !'L Can mE S
costd 1 o
7’ 4a° |

and this is the same for cvery clement of the sphere. [ence
cvery clement illuminates all other elements equally. Thercfore,
the ndirect illumination of the sphere must be the same every-
where, no matter how unequal the direct illumination may be.
That is, a light at I, illuminates the sphere unequally, directly.
But that part of the total illumination due to diffuse reflection

is, notwithstanding, equal everywhere.
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A light of mcan spherical intensity I sends out 4«[ lumens.
Of this there is reflected, 1st, 4mmI lumens.
Of this there is reflected, 2d, 47#°I lumens.
Of this there is reflected, 3d, g4w7°I lumens.

Therefore, total amount of flux reflected is 4wlm [1 + m 4 »2" +
5 m
m® 4 ...} = 47l o F,.
Hence, the secondary illumination, everywhere equal on the sur-
face of the sphere, is

F,
Ez et = lIg, (19)

4ma a’(1 — m)

Thus, the indirect illumination is proportional to I, and the
lamp of intensity I may be anywhere in the sphere. It is equal to
T of what the direct illumination would be if the source were
placed at the centre of the sphere.

For example, let a 16 candle-power lamp be placed within a
sphere having a radius of one meter, and a coefficient of diffuse
reflection of 0.8.

ThenI -~ 16
a -1 meter.
m 0.8.
0.8 16
E,— - —= 64 meter candles.
0.2 I
I - .
E - o 16 meter candles, if lamp is in the center.

. E —E, + E, — 8o.

Thus, the total illumination is five times what it would be if the
walls were perfectly black. We:-can put this in another way:
Of the total illumination of 8o meter candles, 20 per cent. is ab
sorbed by the walls. Therefore, the lamps or source must sup
ply only one-fifth of the total illumination, just enough to make
good the constant loss. :

Thus, the source is analogous to an exciteér of electric waves
that must supply just enough énergy to make good.the friction or
resistance losses in the circuit.



490 TRANSACTIONS OF ILLUMINATING ENGINEERING SOCIETY

I2. LUMINOUS FLUX WITHIN AN ENCLOSURE.

If the inner surface of the hollow sphere has a brightness e,
and a specific radiation E' = we, a unit disc at the center of the
sphere will receive an illumination E, — we. The same will be
true wherever the unit disc is placed within the sphere, and what-
ever the orientation of the disc. That is, the flux falling on the
disc will be everywhere the same. The flux density within the
hollow sphere is therefore everywhere uniform and equal to we.
The flux from a point source is thought of as in straight lines,
and a disc can be placed normal to the direction of the flux. But
within the sphere the flux has a uniform value, but no resultant
direction.

Within a cube or enclosure of any shape, of which the walls
have a uniform brightness ¢ or uniform specific radiation E’ the
same condition obtains as in the sphere; namely, the luminous
flux is everywhere the same, and a small area will have the
same illumination no matter where it is placed or how it is
oriented. 'This is seen by dividing up the space about any point
P into elementary solid angles. The illumination due to the
surface subtending an angle o is independent of the distance from
P, and hence it will be =e for the total angle 2= on either side of
the surface at P, no matter where the surface is placed.

The same is true therefore for the space between two infinite
planes of brightness e. The illumination is we on a small plane
at P,, P, or P,, anywhere between the two radiating planes S
and T no matter how they may be placed. Evidently we cannot
think of the flux as normal to the planes, as with the lines of
force due to electrostatic charges on the planes S and T. The
luminous flux normal to P, is the same as normal to P,. On
the other hand, the électric force normal to P, would be zero.

These theorems have a practical application in the lighting of
rooms.

I3. SUMMARY OF PHOTOMETRIC RELATIONS.

The preceding discussion has shown the necessity for distin-
guishing several different photometric quantities which are some-
times confused. One writer has advocated the use of the fewest
possible names, and has tried to show that intensity, lux and flux
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density are sufficient. In order to fix our ideas more clearly
it will be advantageous now to state as concisely as possible the
definitions of the several quantities and distinctions between
them.

Luminous flux, or light as the term is used in photometry, is
the usual physical stimulus which excites vision. It is propagated
by means of the vibratory motion in the ether, and the frequency
of the vibrations, or the combination of frequencies present in
any given case, determines the color. The total quantity of
flux F flowing away from a monochromatic luminous source is

S T

Fig.14 Fig-15 Fig.16
proportional to the total radiant energy, and to a stimulus co-
efficient, the latter being the luminous efficiency K, for the par-
ticular frequency or wave length of the given radiation. Thus
the equations -
=K\W
Fa

K, —

A WA

express the luminous flux as the power W multiplied by the
luminous efficiency K, , and if flux is expressed in /umens and
the power in watts, the luminous efficiency is the number of
lumens per watt of radiation of the wave length A. For white
or chromatic light, K will have a value depending on the distri-
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bution of the energy in the spectrum. It is a maximum in the
yellow green region and falls off rapidly in either direction,
reaching zero at the limits of the visible spectrum. The lumin-
ous efficiency of most light sources is greatly reduced by the
amount of radiation outside the visible spectrum, chiefly of
longer wave length than that of visible radiation, and the total
efficiency of such a source,
F

K=w
is the quotient of the total luminous flux divided by the total
radiant power.

For the purposes of definition and of expressing the mathe-
matical relations involved in photometry, it is permissible to con-
fine ourselves to monochromatic light, and to consider K a con-
stant, although it does in fact vary somewhat with the magnitude
of the flux density. We also assume that all surfaces are per-
fectly diffusing and obey the cosine law, and that there is no
absorption in the -atmosphere.

The intensity of a point source or uniform luminous sphere is’
measured by the luminous flux flowing through a unit solid angle
whose apex is the given point or center of the given sphere.
Thus from a source of intensity I, light is flowing away at a rate
of I lumens per unit solid angle or a total of 4«1 lumens for the
point source or uniform sphere. If the source is not uniform,
and light is flowing away at unequal rates in different directions,
the intensity I in any direction is equal to the flux dF in an ele-
mentary solid angle do taken in the given direction. Thus
~__dF
1=

is a general expression applying to all point sources whether
" radiating equally or unequally in different directions. Tf the un-
symmetrical source is extended, as for example an incandescent
lamp or a diffusing globe, the same holds true if the distance at
which the measurements are made are sufficiently great so that
the distribution of light is practically the same as from an un-
symmetrical point source. For less destances than this, the in-
tensity is not a constant in a given direction, but varies with 7.
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In this case the equivalent intensity at any point is equal to that
of a point source which gives the same flux density, or lumens
per sq. cm., at the point that the given source does. The mean
spherical intensity I, is the average value of the 1 te ~ity. and
is equal to the total flux F divided by 4.

The total flux from a given extended source is therefore a
constant independent of distance, as is also the imean spherical
intensity I,. The intensity I in a particular direction. i:owever,
in the case of extended sources other than spheres varies with
the distance, but at relatively great distances the variation is in-
appreciable.

Thus the luminous flux is the fundamental quantity. But while
we define I as the flux per unit solid angle, or rate of flux with
respect to solid angle, we determine I by comparison with a con-
crete standard. Thus photometric standards are really standards
of light flux, their values being expressed in candles.

If f is the spherical reduction factor with respect to any par-
ticular direction, and I is the intensity of a source in that direc-
tion,

I, - fI :

For a unit disc, that is a small circular disc of uniform bright-
ness, the total flux is = times the normal intensity I,, whereas the
mean spherical reduction factor with respect to the normal is 4.
Hence, the total flux is

F —xl
47l,, as for a sphere.
In general, for any light source, F, = 471, - 4a/1, but for ex-
tended sources other than spheres, the value of f as well as I
varies with the distance from the source for points relatively near
the source. _

The specific flux or flux density is the luminous flux per unit
of area, or lumens per square centimeter. When the flux falls
upon a material surface, we call the specific flux the llumination,
E. ‘When we speak of the flux coming from a surface, whether
it be a sclf-luminous source at high temperature, or a reflecting or
radiating surface at low temperature, we call the specific flux
the specific radiation, or simply the radiation, E’.

Thus the illumination F is



494 TRANSACTIONS OF ILLUMINATING ENGINEERING SOCIETY

_ B, dF, 1
E=5~w 7

The radiation E' is
, F, dF,
Beo-g = ase
F. is the incident flux, F, is the emitted or radiated flux. If m
is the coefficient of diffuse reflection or transmission, (1 — m)
being the absorption,
F, = mF,
E' = mE,

where the radiation consists in the diffuse reflection or trans-
mission of a portion of the incident flux or illumination.

The radiation or illumination when large may be expressed
in lumens per sq. cm.; when small in milli-lumens per sq. cm.

The milli-lumen per sq. cm. is nearly equivalent to the foot-.

candle.
1 lumen per sq. cm. — 10,000 lumens per sq. meter.
— 10,000 meter candles.
1 milli-lumen per sq. cm. = 10 meter candles = 10 lux.
I
— ————— foot-candles.
1.0765

Specific intensity e of a source is the intensity in candles per sq.
cm. of area, taken normally. Thus

e L _ 4l

S as’
Brightness, or specific light intensity, refers to the quantity of
light per unit of area of a source, and is measured in can-
dles per sq. cm. Brightness can refer equally to luminous
sources of relhtively high specific intensity or to reflecting and
radiating sources of low intensities. The latter may be con-
veniently expressed in milli-lumens per sq. cm. Thus we may
say a flame has a specific radiation of 10 lumens per sq. cm.
or a brightness (specific intensity) of 0.8 candles per sq. cm. ; and
a wall has a specific radiation of 10 milli-lumens per sq. cm., or
a brightness of 0.8 milli-candles per sq. cm. or of 8 candles per

sq. meter.

The quantity Q is proportional to the total amount of light
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emitted by the source, and is equal to the surface integral of the
specific intensity e. Thus

Q =\ edS.

The quantity for a small luminous circular disc of radius ¢ and
uniform specific intensity e is
Q = wa%e —= I]_.

That is, the quantity is equal to the maximum intensity. In
this case, the whole surface is equally effective in producing the
illumination on the test screen by which the intensity I is meas-
ured. But for an extended disc, the quantity and the normal in-
tensity, as we have seen above, are not the same. Thus, the
quantity is e times the surface, or

Q - ‘lrdgt,

9 I
El - »a‘l _I_ rZ - 72 ’
I, 7 7

o T 4
That is, the normal equivalent intensity of the disc with respect
to the point P is Q times cos?d. When the distance is equal to
the radius of the disc, the quantity Q is twice the normal intensity
1. _
The total luminous flux is #eS or = times the quantity, and

Q

the mean hemispherical intensity is =, or half the quantity.
In the case of a sphere of uniform specific intensity ¢ the
quantity is Sm’S — gwa’e. ‘The intensity I -— wa’e. Hence the

intensity is one-fourth the quantity. In other words, the total
radiation from the sphere is four times as great as from a unit
disc of the same normal intensity. The relation between quantity
and intensity for a few simple cases are

For a unit disc I, — Q.

2
For an extended circular disc I, = Q cos’ § = Q;— .

For a sphere I - 4 0Q.
For a unit cylinder I = %Q.
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The total luminous flux delivered in a given time, that is the time
integral of the luminous flux, may be expressed in lumen seconds
or lumen hours, according to circumstances. Thus, putting L
for the total lighting in the time T

I, =FT

— deT, if F is variable.

where F is in lumens and the time is expressed in the most
convenient unit. The flash of a firefly may be expressed in
lumen-seconds ; the quantity of light per gram of an illuminant,
or the total light given during the life of an incandescent lamps
is better expressed in lumen-hours.

Since flux of light may also be expressed in spherical candles,

1. L
(Z— times the lumens) we may also express the time integral
w .

or total quantity of light in terms of spherical candles and hours.

Thus
I, =IT

= gIa’T, if the spherical candle-

power is a variable with respect to T, the value of L, being here
given in candle-hours.

The photometric quantities employed in the preceding dis-
cussion are shown in Table I, together with the units in which are
expressed and the equations of definition.

The symbol F has been employed for the flux (as originally
proposed by Hospitalier) instead of ® for the following reasons:

1. ® is the only Greek letcer in the series, and it is more con-
sistent to use a Latin letter; F is the initial letter of the word
flux. /

2. The letter ® is more or less unfamiliar to many illuminating.
engineers, and also to many printing offices, and it is often con-
fused with the small letter ¢ which is used for an angle,

The symbol E’ is used for radiation instead of R (as proposed
by Hospitalier) because it is so closely related to the illumina-
tion. DBlondel and others proposed to employ the same letter E
for illumination and radiation, but that gives rise to confusion.
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On the other hand, E’ gives sufficient distinction, and at the same
time recalls their close connection. The letter ¢ is used instead
of i for the specific intcnsity or brightness because it has been
used in France and Germany, and hence its use in the English
language tends to uniformity. Quantity of light, Q is here used
as the surface integral of e instead of the time integral of F.
It is analogous to quantity of electricity in electrostatics, and is
more properly employed in the sense here used than with the
other meaning: The term lighting for flux times time is used
in harmony with the usage in France and Germany.

I11. PROBLEMS FOR ILLUSTRATION.

Problem 1.—A lamp of 200 candle-power (supposed uniform
in all directions) is placed in the center of a spherical diffusing
globe of 40 cm. diameter, the absorption of which is 30 per cent.
Required, the intensity of the globe, its specific intensity, its
specific radiation, the illumination on its inner surface, and the
illumination it produces at a distance of 3 meters from the center
of the globe.

The illumination on its inner surface is
I 200

E -~ — 2100 0.5

lumens per sq. cm., (formula 1). The radiation E’ is mE,
where m is one minus the absorption; it is here 0.7. Therefore,
the radiation is 0.35 lumens per sq. cm. The specific intensity

e is E or o.112 candles per sq. cm. The intensity I of the globe
m

is 200 X 0.7 = 140 candles. The illumination E at a distance of
3 meters
E = }4()2~ -~ 0.00156 lumens per sq. cm.
300
~— 1.56 milli-lumens per sq. cm.
== 1.45 foot-candles.

or E — — - = 15.6 meter-candles.

= 15.6 lux.

Problem 2.—A circular area S, two meters in diameter, on the
side of a wall is uniformly illuminated, E being 4 meter-candles.
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A photometer placed one meter from the wall, perpendicular to the
center of the illuminated area, measures the equivalent intensity
I of the area S, and finds it to be 1 candle. What is the absorp-
tion coefficient of the wall?

The illumination E being 4 meter-candles, and the area S be-
ing 7 square meters, the flux F falling on the area S is 4= lumens.
The measured intensity I at a distance = 1 meter is 1 candle.
Therefore, the quantity of light on the disc is

Q=-I~, .1 X f — 2 candles.

The total flux from the disc is = times the quantity Q. There-
fore, the total flux coming from the area S is 2x lumens, whereas
the flux falling upon it is 4= lumens. Therefore, the coefficient
of absorption is 4 or 50 per cent.

Problem 3.—Suppose a room of goo square meters total wall
surface is to be so lighted that the walls shall have an average
illumination of 10 lumens per square meter, the coefficient of
absorption of the walls being 40 per cent on the average. How
many lamps of 15 mean horizontal candle-power will be required?

Part of the illumination will be due to light reflected from
the walls. The lamps must supply that which is absorbed. The
flux to be supplied is therefore F = 0.40 X 900 X 10 = 3,600
lumens. If each lamp has a spherical radiation factor of 8o
per cent., it will supply 47 X 0.80 X 15 = 150 lumens, approxi-
mately. Hence, 24 lamps will be required.

(Examples 1 and 3 are borrowed from one of Blondel’s papers.)
COLLECTION OF FORMULAS.

I . . .
1. E = for point source, unit sphere of any size. I =

4wa’e, where a — radius of sphere and e == bright-
ness of surface.

2
Tae .
2. E = — for sphere of radius a.
r 1

— we when » = q; that is, at surface of sphere, same as
for an infinite plane.
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3.

2
mae
E =7 = —% for disc of radius @, at distance » on
a + 7 d
axis.

d = distance of point on axis to edge of disc.
e . . . . .
E = 1_::_ for infinite cylinder, ¢ — brightness or specific
light intensity. a — radius
Q

=, where Q, = quantity of light per unit of length

— =me at surface.
2ae

I, = = intensity per unit of length.
E — =e for infinite plane, af all distances.
E = edfsrf—(i{ = edw for any small surface 4S subtending a

small angle dw at any distance.
E = —25— cos ¢, for infinitely long, very narrow strip of ¢

units of light per unit of length

_ 29,

o

Q = SedS over sphere, cylinder, disc or other surface
where ¢ = normal intensity.

F, = =Q, for sphere or other extended source.
Q L oo, .

E = 7 r’ R R cos’ 0, for a disc.

I, = equivalent point source, Q = quantity of light over
disc

I = QJ4 for a sphere.



