Light Flux Distribution in a Rectangular
Parallelepiped and its Simplifying Scale
By KIYOSI HISANO
Translated from the Japanese by Harry Smiramizu*, edited by Parry Moon™**

The following is a translation of Research Bulletin No. 394 of the Electro-
technical Laboratory, Tokyo, which was published in 1936. The research
makes a fundamental contribution to lighting design and thus its English
translation should be of interest to illuminating engineers. The transla-
tion is believed to be a faithful mirror of the original ideas, though we have
condensed the rext slightly and bave omitted some of the figures. (Ed.)

1. Introduction

NTERIOR-lighting is an important branch of illuminating engineering,

a branch in which the space under consideration is usually enclosed in a

rectangular parallelepiped. A rigorous treatment of the rectangular

parallelepiped, however, would involve extremely complicated calculations,
and the problem has therefore remained unsolved to this day.

During the past ten years, lighting research has advanced in a striking
manner so that today we can calculate light distributions from large sources
and can deal theoretically with daylight illumination. Methods have been
obtained for the calculation of illumination from large surface sources and of
total flux from one surface to another. Furthermore, the basic theory of
interreflections has been developed and the interreflection theory for the
circular cylinder has been completed. The distribution of flux in a rectan-
gular parallelepiped, however, still remains an unsolved problem.}

Observing that the luminous flux distribution in a rectangular parallele-
piped is of great practical importance, the author investigated the possibility
of expressing the result in simple form. He obtained the simplifying scale
described in this paper. Calculations and experiments prove that the use of
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1 For more recent work on this problem, sce
W. T. White, Calculation of light distribution in lightwells, Journal of the Opsical Sociery of America, 31, 1943, p. 308.
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21, 1942, P. 250.
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[232



LIGHT FLUX DISTRIBUTION IN A RECTANGULAR PARALLELEPIPED 233

this simplifying scale allows every rectangular parallelepiped to be replaced
by a tectangular parallelepiped with square base (equivalent square room).
Thus experiments or calculations need be made only on squate rooms.

This study was made while the author was connected with the third section
of the Electrotechnical Laboratory. The author desires to express his deep
gratitude to his associates of the same laboratory for their painstaking cal-
culations and their assiduous effort in carrying through the experimental
work. He thanks particularly Dr. Ziro Yamauti for his advice.

2. Definitions and Postulates

Let # and 4 be the dimensions of the ceiling of the rectangular parallele-
piped and let 4 be the height. The harmonic mean of the two sides # and 5 is

24b

- 2 + 5 . (I)
The quantity A is called the simplifying scale because if it is used to measure
the length, the problem of the rectangular parallelepiped is greatly simpli-
fied. That is to say, within the practical range of room dimensions, the flux
distribution in a parallelepiped with ceiling # X & and height 5 is essentially
the same as the distribution in a room whose ceiling is 1 X 1 and whose
heightis 5/\. The height g, measured by the simplifying scale, is

2 = b/\. @

The quantity z is called the equivalent beight and the room whose square floor
measures 1 X I and whose height is g is called the equivalent square room.
The following postulates are used in this treatise:

(=) All interior surfaces of the rectangular parallelepiped are perfectly diffusing.
(2) Ceiling, walls, and floor—each of the three has a uniform reflectance.

(3) Brightness of the ceiling is uniform.

(4) IHumination at a given height on the wall surface is uniform.

(5) Illumination of the floor is uniform. .

Also, since the purpose of the paper is to simplify practical problems,
dimensions whose actual occurrence is uncommon will not be considered.
Parallelepipeds have been restricted to the range.

=<2, k=5/a <4 3

As the object is the application to lighting design, the aim will be an accuracy
of & 10 per cent.
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3. Primary Flux Distributions
Flux to Floor from Ceiling

It is known! that the total luminous flux direct from a- ceiling (4 X 5)
having uniform unit brightness*, to a floor at distance 4 from the ceiling, is

F = 4fb2 [ga (tan—l ——b—~) — @ (t:m_1 é)]
A Va: + b ? b

oo ) (D))

Here the function ¢ is defined as

@

oo(w) = L (0w cot w — % log sin w + £ cot? w log cos w). ©))

Hence U, the ratio of the flux incident on the floor to the flux from the ceiling,
is F'/nab, (in other words?, U is the floor illumination when the ceiling has
unit luminosity), or

_4fb -1 __ b _ —15]
U—-"—r ;[qoZ(tan m) (pQ(tan 7

a _ a 4
#i o (o 573) - (=)

As shown by Eq. (6), U is determined by @/b and 4/bh. The equation can be
expressed also in terms of the ratio k = 4/4 and the equivalent height z, for

a aa+b 1+Fk b_éa+b_1—|—k o)
bz 2ab bz b 2z 7

®

fm g ®

Then Eq. (6) assumes the simplified form:

L e I ) I IO

* (Throughout the paper, brightacss is expressed in candles per #nit area. Hisano could have saved himsclf the annoying nccessity
of shifting s about if he had used the concept of beléos or if he had expressed his brightness in equivalent lumeas per unit area. Fd.)

1Z. Yamauti, Researches of the Electrotechaical Laboratory, Tokyo, No. 250, 1925.

2 In addition to the above definition, U may be designated as follows:

** U is the average illumination on the floor whea the ceiling has uait luminosity™", or

““U is the ratio of the average illuminacion on the floor to the illumination on the floor that would be produced if the ceiling
cxtended indcfinitely.”

Thus U is the daylight factor.
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If Uis considered as a function of # and 4, Eq. (6), U will vary greatly as the
ratio k is changed, even if 5 is constant. This variation is illustrated by a
chart in the author’s previously published research®. But if U is considered
as a function of g and %, then & has comparatively little effect, as shown in
Fig. 1. In fact, curve I of Fig. 1 shows that over the practical range the
cffect of k may be neglected. Within this range, the value of U for a given g
is independent of k£ to within approximately 1o per cent.

Accordingly, for the degree of accuracy and for the ranges of & and g con-

_sidered in this paper, Eq. (9) is sufficient to determine U. This quantity is
considered to be a function of z only, and thus it is possible to eliminate one
of the independent variables required in determining the flux incident on the
floor directly from the ceiling.

For a square room having the side @,

A= a.

The equivalent square room is one whose floor dimensions are 1 X 1 and whose
heightis g = b/a. Therefore in determining experimentally the U pertaining
to various parallelepipeds, it is sufficient to experiment with a square room
1 X1Xg%

Direct Illumination on the Wall

It has been established (footnotes 4 to g) that the following equation ex-
presses the illumination on the wall, produced by a ceiling source of unit
brightness:

E, = tan_l %ﬁ_ — '—b‘ tanﬁl —b/;
4 b Va4 B Va § B

Here the distance 4 is measured vertically from the ceiling to the point on the
center line of the wall, where the illumination is desired, and 4 is the width of
the wall. Thus

1 - b/y_ b -1 b/?.
U, = ;{tan 5 \/‘m tan \/——m . (10)

These equations are in terms of z/h and &/h only. But by Eq. (7), U, can be
expressed as a function of g and k.. A numerical analysis shows that, like U,
‘U, also is independent of &, to the desired degree of accuracy and within the

3K. Hisano, Rescarches of the Elecrrotechnical Laboratory, Tokyo, No. 367, Fig. 2 in Appendix,

4H. S. Swan and G. H. Tuttle, Architectural Forum, Nov. 1918.

5 H. H. Higbic and A. Levin, T ions of the Illuminating Engi ing Society, 21, 1926, p. 273.

6 H. H. Higbie and W. T. Szymanowski, T7 ions of the Illuminating Engincering Socicty, 25, 1930, Pe 213«
7Giiti Onomoto, Journal of the Society for Study of Illumination (Japan), 8, p. 126.

8 Z. Yamauti, Rescarches of the Electrotechnical Laboratory, No. 194.

9 K. Hisano, Rescarches of the Electrotechnical Laboratory, No. 367.
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practical ranges of k and z. That is, this problem also can be treated by
means of the equivalent square room. Equation (10) then becomes
1 X —

=1 f -1 1 I _
U, = - tan = Nife tan 7—\/1—1?}, (k =1). ()

Average Illumination at Given Distance from Ceiling
Since U is the flux to the floor, produced by unit ceiling flux, the quantity
- 3_2{ db represents the flux from the ceiling to the four elementary wall strips

found by two horizontal surfaces at distances » and (b + 4b) from the ceiling.
Furthermore,

U
— =5 db/2(a + ) db

is the average illumination on these elementary wall strips.
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But for an infinite ceiling of brightness 1/(zab), the illumination on a
horizontal surface is 1/4b. Therefore the average wall illumination at
distance 4 below the ceiling, expressed as a daylight factor, is

U ab 1 U 19U
Bl r BT i T Tix (1)
The formula for — 9U/d5 was obtained by Yamauti'®:
SRR 11 VO .
9z (e + b){ M EF NET R NEt+ R
b a
-1 # . 7 —1 2
+ @ I:tan 3T NE LB tan Vi T b2] (13)
2 2 2 2
@B+ D)

P + B+ ) I'

This, too, is a function of /5 and 4/h only; and the possibility of expressing
itin terms of k and g is the same as for U. Ifk = 1, Eq. (23) becomes

_U _ 4 {tan_l % tan”" = zln —TX iiz—}
& 2 Vit+e Vi+ 2 V2 +2[7 (1
(%=1

Calculated values of — 9U/dz are plotted in Curve II, Fig.1. Asshown, this
quantity becomes a function of g only, practically independent of k. "In other
words, for practical purposes Eqs. (12) and (13) are sufficient to determine the
average illumination on the walls at any height, using the ceiling as light
source. Evidently an experimental investigation with a square room will
suffice to give all necessary information.

Inzerreflecrions berween Walls
The flux to an elementary wall strip of width 4b and distance 4 from a ceil-
ing of unit brightness is —%db. Reciprocally, the flux to the ceiling from
!
an elementary wall strip of unit brightness is also —%db. Hence when the

wall strip is of unit luminosity, the flux incident to the ceiling is

and the average ceiling illumination is

1 Z, Yamauti, R hes of the Elcctrotechnical Laboratory, No. 250.
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1 9F' _ oU N
This quantity, too, can be treated as a function of g only, as shown in the
previous section.

When this ¢lementary wall strip of width b has unit luminosity, the flux
from it to a second elementary wall strip of width 4h, at distance 4 from the
first strip is

1 82 F 1 a3U ab I

L 4 __r Y% _

- or b b 20a + b)dby O b 20a + b)) 4 oz
This equation constitutes the basis for the determination of interreflections
between wall surfaces. Yamauti'® has shown that

o U _ 84b Pl an b
W At @R VB -
P S RN Y > G Y 7
T R FEN RN

Just as with 8U/9z, this new function can be expressed in terms of & and z.
For k = 1, Eq. (17) becomes

6 U 4j 1422 _
ra = /rl(I +Z2)3/Z \/ +2’_2+l (Z\/Z.-l— >3 (k = 1). (u8)

That 92U/8z2 will, for practical purposes, be independent of kis indicated by
Curve IIT of Fig. 1.

" Flus: to the Floor from a Point Source

Previous sections have been devoted to the luminous flux from surface to
surface, but this section considers the flux to one surface from a point light
source. Assume that the source is in the center of the room and that its
height above the working plane is b, . The problem can be handled easily if
the intensity is uniform or if the source is a portion of perfectly diffusing
surface in a horizontal plane.

The ratio of the luminous flux incident on the working plane to the total
flux from the luminaire is called the inzrinsic utility factor* K. The problem
is to find the relation between K', gz, = A,/\, and k. For a uniform point
source of intensity I, the total flux is 4 I and the flux incident on the working
plane is

* Inerinsic urility factor i the cocfficient of urilization pertaining to the light emitred by luminaires. Needless to say, che relation

between the two quantities is
Coefficient of utilization = (Intrinsic utility factor) X (Luminaire cfficiency).
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o tan™ (2/2)b/2)
bN/bE + (a/2 7 + (B/22"

Thus the intrinsic utility factor is

K =L tan? ab
w N b + (/2P + /2
When the light source is a petfectly diffusing surface of area AS and of
unit brightness, placed horizontally in the center of the ceiling, the flux from
the source is wAS. The flux to the working plane from this source is, by
reciprocity, the same as the flux to AS when the whole working plane is a
source of uniform brightness. This can be expressed as follows:

(19)

I a/2 o b/2
448 [Z Vi + @r " bE + (ajoy
. b/2 . /2
+3 Ve + (6/2) can VhZ + (b/2) (5/7-)2]

Therefore the intrinsic utility factor is

K [ a2 an™ b/2
NCEND N \/ bt +(a/2) o)
b/ *1 a/2

Equations (19) and (20) may be expressed in terms of #/b, and b/h,. Thus,
as in previous cases, these quantities may be written as functions of & and z, .
Fig. 2 indicates the relation between K’ and z, for the values of & specified in
the diagram. Curve I corresponds to Eq. (19) and Curve II corresponds to
Eq. (20).

Since this preliminary survey was based on the theory of only two tepresen-
tative light distributions, it is necessary to cxamine the validity of the
method with light distributions in general. Next, therefore, a survey was
made using the so-called Trojan luminaire. The exterior of the fixture was
diffusing and was not ornamented in any way. Measurements were made by
means of a photocell.

First, to determine the flux directly to the rectangle, all surfaces of the
room were painted black and the luminaire was suspended in the center of the
ceiling. Three different horizontal rectangles were used (k = 1, 2, 4), with
the luminaire at height b, above them. The flux to these rectangles was
measured and the ratio to the condition for £ = 1 was determined. The
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source was located above the center of each rectangle. The result of these
measurements is shown in Table I. For practical purposes, it is unneces-
sary to consider z, = 2. Accordingly, if the range is limited to g, < 1,
the results are independent of k even with a light distribution such as that
given by the Trojan luminaire.

Results obtained in Table I, as well as the theoretical investigation, were
for a light source above the center of all rectangles. Subsequent work dealt
with the source off center. But in this experiment, interreflections also were
introduced. White paint with a reflectance of 0.871 was applied uniformly
to the walls above the working plane and to the ceiling, and black paint was
applied to the walls below the working plane and to the floor.

The working plane was divided into 36 squares 1m X 1m, and the illumina-
tion was measured at the center of ecach square. This value of illumination
was considered to be the average for the square, and the addition of thesc
values gave the total flux to the working plane. When the source was in a
central position, the final flux to the working plane was called unity. For
other positions, the values were 0.996 and o0.977. That is to say, in a room
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TABLE I
k 25 =2 zg =1 . 35 = 0.6 58 = 0.3
I.00 1.00 I.000 I.000
2 1.09 1.04 0.996 0.967
4 1.36 I.11 0.965 0.918

whete 2, = 0.35, the light source may be considered to be in the center of
the ceiling, even when it is actually displaced, and the error will be negligi-
ble. This property is convenient in dealing with practical problems.

Final Flux Distribution

Previous sections showed that, for the range of practical interior lighting
and within the necessary accuracy, the primary light distributions in a
rectangular parallelepiped (flux from ceiling to floor or to walls, flux from
wall to ceiling ot to wall, flux from a point source to the working plane) are
all functions of g only, & having negligible effect. Hence it is to be expected
that with final flux distributions (including interteflections) in interior
electric lighting the same relation will apply and thac it will hold likewise
for daylight illumination.

This section proposes to show experimentally that this anticipation is
correct. The experimental results of Harrison and Anderson ' 12 on interior
lighting and the data of Meacock and Lambert ** on lightwells will be used,
also the daylighting experiments of the author.

To determine the coefficient of wtilization by the Harrison-Anderson triple
light-distribution principle, the first requisite is the room index which is fixed
by the shape of the room. But a precise definition of room index has been given
only for square rooms. X the side of the square is 2 and x = #/b, , the room

index R(x,x) is
R(x,x) = Zﬁ' = x/2. €23

In this problem, the simplifying scale is A = &, and thus
Zs = bja =1 /x.
Therefore,
R(x%,5)%s = 1/2. (€X)

11 W. Harrison and E. A. Anderson, Transactions of the llluminacing Engincering Society, 11, 1916, p. 67.
12 W. Harrison and E. A. Anderson, Transactions of the Hlluminating Enginecring Society, 15, 1920, P. 97.
18 Meacock and Lambert, Illumination Rescarch, Technical Paper No. 11 (London).
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TABLE II—Haxrrison’s Room INDICES

a b Edition| & =7 8 9 10 12 14 16 20 24
10 10 T 0.6 0.6 0.6 0.6
2 1.2 1.0 0.8 0.6 0.6
20 I 0.8 0.8 0.6 0.6 | 0.6 0.6
2 1.2 1.0 0.8 0.6 0.6 0.6
30 1 1.0 0.8 0.8 0.6 | 0.6 | 0.6 0.6
2 1.5 1.2 1.0 0.8 0.6| 0.6
40 1 1.25§ 1.0 I.0 0.8 0.6 0.6 0.6 | 0.6
2 1.5 1.2 .2 1.0| 0.8 0.6 0.6 0.6
30 30 x 2.0 2.0 1.5 1.5 I.25/ 1.0 1.0 0.8 0.6
2 3.0 2.5 2.5 2.0 | 1.5 I.2 | 1.2 1.o0| o.8
60 1 2.5 2.5 2.0 2.0 | I.§ 1.2§| 1.25| 1.0 | 0.8
2 3.0 3.0 2.5 2.5 1.5 1.5 1.5 1.0 1.0
I00 I 3.0 1.5 7_.5 2.0 2.0 I.§ I.S I.0 0.8
pA 4.0 3.0 3.0 7_.5 2.0 2.0 2.0 I.S 1.2
140 1 3.0 2.5 2.5 2.0| 2.0 2.0 1.5 1.25] I.0
2 4.0 3.0 3.0 2.5 2.0| 2.0| 2.0 1.5 1.2
60 60 T 4.0 4.0 3.0 3.0 | 2.5 2.0| 2.0 .5 1.2
2 4.01 3.0 2.5 2.5 2.0 1.5
100 x 5.0 4.0 4.0 3.0 3.0 | 2.5 2.0 1.5 1.5
2 4.01 3.0 3.0| 3.0 2.5 2.0
200 1 5.0 4.0 4.0 3.o0f 3.0 3.0| 2.5 2.0| 2.0
2 4.0 3.0| 3.0 3.0} 2.5 2.0

That is to say, the room index of a square room may be determined by the equivalen
height. Suppose that b, is 2/3 b, as in ordinary lighting with diffusing glob
luminaires. Thenif g = /N = b/a, Eq. (21) becomes

R(x,x) 2 = 3/4. (23,

The definition of Eq. (21) provides the room index for direct lighting, bu
the room index of a square room with semi-indirect or indirect lighting i

a2 .
R(lx,x) = b (24,
but in this problem x = ; Z 73 and the relation between R(x,x) and g can b

expressed by Eq. (23).

Although the room index for rectangular rooms has been considered i
many books, its definition is very vague. Presumably it was determined a:
follows. Given a rectangular room with dimensions 2 X & X b and witl
reflectances p; and p, . Take a square room &’ X &’ X b with the same coeffi
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TABLE III—Harrmon's Room INDICES

a/hs Edition |b/hs = 1.0 2.0 3.0 5.9 7.0 10.0 20.0
1.0 1 0.6 0.6 0.6 0.8 1.0

2 0.6 {0.9 f0.6 0.8 0.8 0.8

0.8 {0.8 1.0 1.0 1.0

1.2

2.0 1.0 1.25 1.5 1.5 1.5

2 1.0 [1.7. 1.2 1.2 1.5

1.2 1.5 1.5 1.5 2.0

R 1.5 Lz.o 2.0 2.0 2.5
3.0 I.S R I.S 2.0 2.0 2.0
2 [1.7_ '{1.5 [1.5 1.5 {7_.5
1.5 2.5 2.0 2.0 3.0

lz.o 2.5 2.5

2.5 l}.o
5.0 1 2.5 3.0 3.0 3.0
2 2.5 {3.0 3.0 5.0

3.0 4.0 4.0

4.0 5.0
7.0 1 3.0 4.0 4.0
2 5.0 5.0 5.0
10.0 1 5.0 5.0
2 5.0 5.0

cient of utilization and with the same reflectances. Finally, assign the room
index R(x’, x") of the square room to the rectangular room. If derived in
this way, the concept seems to be of little value.

Moreover, the early room indices given by Harrison (who wrote Chapter
V in Cady and Dates, I/luminaring Engineering, first edition, 1925, p. 296) differ
greatly from those he gives in the second edition of the same book (1928, p.
300). The difficulty is particularly noticeable in the second edition, where
different values are assigned to the room index when the absolute value of the room
height is varied, even though the room shape is the same. A comparison is given in
Table II.  The table shows that drastic changes, which cannot be thought of
as simple revisions, have been made. Then, too, the room indices of the
second edition are not uniform, even though the relative dimensions of the
room are the same. In fact, a table for 4/b, and b/b, (Table III) shows the
existence of from two to four room indices for identical values of #/b, and
b/ b,

This fact does not tally with Harrison’s own notion of room index and
imposes considerable strain on his concept. The author’s feeling is that
room index should be determined absolutely by the relative dimensions of the room. 1f
additional variables must be considered, they should be introduced by means
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TABLE IV—Rooum Inpices ror Recrancurar Roowms, R (x, ¥)

afhs | {‘f0= 1.5 | 20 3.0 40 5.0 6.0 7.0 10.0 15.0 20.0

0.8 0.6 [ 0.6 0.6 0.6 0.8 0.8 0.8 0.8 1.0 1.0

(0.69) (0.76)] (0.7

1.0 0.6 | 0.6 | 0.6 0.6 o.8 0.8 0.8 1.0 1.0 1.0 1.2

(o.75) (0.88) (0.9

1.5 0.8 [ 0.8 1.0 1.0 1.25 | 1.2§ 1.2§ 1.5 1.5 1.5
(1.30)

‘2.0 I.0 I.?_S I.ls 1.5 I.s 1.5 .[.5 I'S I.S

: (.77 (1.8

3.0 1.5 1.5 1.5 2.0 2.0 2.0 2.0 2.0

(1.87) (z.31)| (2.50)| (2.6

4 o 2.0 2.0 z 5 A 5 7_.5 7_.5 7..5

(2-85)] 3.16)| (3-3

5.0 Y 7..5 3.0 3.0 3-0 3.0

] (.75 (4-0

6.0 3.0 3.0 3.0 3.0 3.0

(-75)] (4.28)| (4.6

7-0 3.0 4 [o] 4.0 4.0

G-5) 477 G-t

I10.0 5.0 5.0 S.O

(6.00)]| (6.6

of another factor rather than by trying to hang them onto the room inde
To illustrate, Harrison has given no consideration whatever to the spacit
of luminaires. Nor in his experiments is the mounting height of the lum
naires kept constant at b, = 2b/3. Because of the existence of these defect
it can be surmised that Harrison found it necessary to make the revisions th
are found in the second edition.

A comparison of the room indices (first edition) and the simplifying sca
will now be made. If the values of the first edition are to be changed, tl
new values are indicated in parentheses in Table IV. Assume that the rel
tion,

b, = 2b/3 (2

holds. Then if relations similar to Eqs. (22) and (23) are valid, and x = 2/#
9 = b/h,, the room index for the rectangular room is

R(x,.y) = 1; = 4%{- (u

The values of room index calculated from Eq. (26) are indicated in pare
theses in Table IV. For the values not enclosed in parentheses, the ca
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:ulated results when rounded off to 0.6, 0.8, 1.0, 1.25, 1.5, 2.0, 3.0, 4.0, and
;-0 will agree with Harrison’s values. A close examination of Table IV
eveals the following:

(1) Of 73 room indices, only 26 do not agree;

(2) Of these 26, seven are at the boundaries where indices change. They tally with the room
index next to the right or next to the left in the table.

(3) Of these 26 room indices that do not agree, 10 are below 1.5. The remaining 16 are above
2.0 and when they are shifted to the next higher or next lower, there will still be no con-
siderable change in the coefficient of utilization.

Thus if the room index is defined by Eq. (26), most values will be essen-
ially correct. Even in the problem of very large rooms, where discrepancies
etween Eq. (26) and experiment are comparatively frequent, the error in the
oefficient of utilization is 1o per cent or less. Hence the room index of a
ectangular room, for which the definition has always been vague, can be
efined by Eq. (26) with results that are sufficient for practical purposes.

But the room index is nothing but a stepping stone for the determination of
he coefficient of utilization. This coefficient can be obtained directly from
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Fic. 4—Author’s data for light distribution in rectangular lightwells. Reflectance of walls
= 0.857,depth Zy = 4. Curve, k=1;0,k=2; A\ k=40, k=8;@, k=% A, k=1
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s » whose specification is exact, or by g, in which cases there is absolutely no
necessity for considering the room index.

The determination of intrinsic utility factor does not require room indices.
The possibility of using equivalent heighit instead of room index has been
mentioned. The relation between g and the intrinsic utility factor was in-
vestigated for all the rooms (A, B, C, D, E, F,, F., F;, F,)" measured by
Harrison'and Anderson. The results show that the intrinsic utility factor
is determined by g only, independent of k.

The next investigation shows that the flux distribution in a lightwell, with
sky as source, is also independent of .. The experimental results of Meacock
and Lambert are used, as well as those of the author. Among the Meacock-
Lambert data, two cases were chosen (p = 0.800 and p = 0.246) and the
relation was studied between g and the final illumination along the center

-line of awall. The results, expressed in terms of daylight factor y, are shown
in Fig. 3.

1 Fy, Fg, F3, Fy are the four rooms citcd:ou Page 105, Table I of Transactions of the Wluminating Engincering Socicty, Vol. 15 (sce
Footnote 12).
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In the wide range of 1 < k& < 10 and g < 10, all experimental points could
be represented by one curve, proving that the. final distribution (with inter-
reflection) is independent of k. The author’s experimental results (Fig. 4) are
similar.

The experimental details were as follows. The room was §5.45 X 5.45 m
(a8 ft X 18 ft), the ceiling height was 3.64 m (12 ft), and the interior was
equipped with four luminaires placed so that the ceiling was uniformly
lighted. Diffusing white paint of reflectance 0.80 was applied to the ceil-
ing and walls and black paint of about 0.04 reflectance was applied to the floor.
The ceiling represented the sky, and the lightwell erected in the center of the
room was a model 1.8 m high. Illumination was measured by means of a
photocell, and daylight factor was determined as the ratio of the illumination
on the walls of the model court to the illumination on a horizontal surface
at the top of the court. Experiments were made with reflectance of the walls
of the lightwell ranging from approximately o.15 to 0.85 but only ‘a part of
the results are presented here.

4. Conclusion

It has been shown that if the height of a room is measured by the simpli-
fying scale, that is if the equivalent height is used, the treatment of flux distribu-
tion in a rectangular parallelepiped is greatly simplified. When the floor is
4 X b, determine the harmonic mean of z and 4:

24b
a+ b
Then express the height of the rectangular parallelepiped by means of an
equivalent height g:

z = b/

Then both the primary flux distribution (without interreflections) and the
final flux distribution (including interreflections) will be functions of z only,
having no connection with & = 5/4. Thus the problem of the general rec-
tangular parallelepiped resolves itself into the problem-of a room whose
dimensions are 1 X 1 and whose height is z: the equivalent square rooms.

Therefore, in both theoretical and experimental work, 3 consideration of
square rooms gives all necessary information and the problem of the rec-
tangular room is greatly simplified. The range in which this: mmphﬁcauon
can be safely applied is

R=2,k=<4

and the accuracy is within 1o per cent, which is close enough for practical
surposes.



