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On the computation of

equivalent sphere illumination

David L. DiLaura

Equivalent sphere illumination (ESI) can be calculated by an efficient
technique that will make computation for many iarget locations in a room
practical. The technique can be easily coded into a computer program, and
results will be provided much faster than programs based on other
computational techniques. Computations for the background and task
luminance of a target are separated into two components: Part | of this
paper considers the calculation of the direct components (the Appendices
give a specific algorithm for their computation); Part Il considers the

computation of the reflected components.

Part I—Direct component computations

Calculation of the direct components begins by es-
tablishing a function to interpolate equally spaced,
discrete, two variable data. The interpolating
function used in the present work is a two variable
trigonometric polynomial of cosines. It fits the dis-
crete data values, f (x; yj), exactly (within
roundoff noise) and assumes derivatives at each of
the data points, defined by

af(xiJL) o~ f(xi+1’yj) _ f(xi-hy,i)
ox Xipl — Xyt

8f(xi7yj) ~ f(xby j+1) — f(xi’yj-l)
9y Vi ~ Vi

Other definitions for the derivatives could be cho-
sen, but those given result in a convenient form for
the function.

Using trigonometric polynomials that are con-
strained to fit not only data values but also deriva-
tives, helps eliminate ripple—characteristic of
trigonometric polynomials. This insures reason-
able values of interpolation.
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Assume the following set of equally spaced data

flx;v) i=0,...,M
(M + 1 points of the x variable)
j=0,...,N

(N + 1 points of the y variable)

with ;41 — x;, = Ax, for i =0, ... M — 1 and
yj+1 —y;j = Ayforj=0,..., N — 1. In general, the
increments Ax and Ay will not be equal. The inter-
polating function, F(x,y) is given by

-1 2N-1°
N ?
Flxy) = 2 Z'am,, cos(ﬁmﬁ x) X
m=0  n=0 2M " xy
2n N >
C.OS<2NnyNy (1)

where a ., = constant coefficient constructed from
the data,
xp = maximum value of the x variable,
ynN = maximum value of the y variable,
0<x<xyand 0 <y < yn.
Since we are using a cosine polynomial, F(x,y) be-
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Figure 1. A modification of the perpendicular plane angular
coordinate system.

haves as if the data is an even function of x; with
period 2M, and an even function of y; with period
2N. The coefficients, a,,,, of (1) are given by

202M — m)  sin{—
u (Mm)
mn (2012 7(2M + 1)
22N - #») sin(ﬂn) MN
N 17 ’
(2N)2 72N + 1) 1Z= Z x

i=0 =0

41(i,j) cos(]%mi) cos (%ny) (2)

The double tick marks on the summations in (1)
and (2) indicate that the first and last summends
of the sums are halved before being added to the
total.

A modification of the perpendicular plane angu-
lar coordinate system (see Fig. 1) is used through-
out this procedure. The point P is located by the
coordinates (8,4,r). This coordinate system be-
comes indeterminent when # and ¢ are zero or pi.

Expressions are now derived for the task and
background luminances of a visual target due to a
single rectangular luminaire. The origin of the
coordinate system is located at the target, and al-

though it can assume any location, the orientation
of the coordinate system is not changed. The
planes in which 6 and ¢ are measured are always
parallel and perpendicular to the same walls of the
room. Fig. 2 shows two locations of the coordinate
system specifying the position of Point P. Consid-
er a particular task position, viewer orientation,
and luminaire (geometric details are shown in Fig.
3). The viewing direction is called north.

A differential element of the luminaire, dA, is
providing a luminous intensity, 154 (0,¥), at the
target. The intensity distribution of the element is
specified by the coordinates (6,¢) of a perpendicu-
lar plane angular coordinate system with origin at
the differential element. The incident direction to
the target is specified by (6,¢). The Bidirectional
Reflectance Distribution Function (BRDF) of the
background is 8,(0,¥). The luminance of the back-
ground due to the element dA is given by

Ly = Bo(6,0),4(8,9) cos(e)/rt  (3)

It is now assumed that the element of the lumi-
naire has an intensity distribution proportional to
the distribution of the entire luminaire. The pro-
portionality constant is the ratio of the element’s
area to the entire luminaire’s area. Thus,

~

1.4(6,3) = 1(8.3)(dA/A)

where A = area of the entire luminaire
dA = differential element’s area
144 (6,¢) = intensity of discrete element in
direction (8,§).
I (8,¢) = intensity of entire luminaire in di-.
rection (8,y).
Substitution into (3) yields

Ly = 260,010, P cos(e)/rlaa (@)

Since the plane of the luminaire is assumed paral-
lel to the plane of the target, # = 0 and ¢ = ¢,
which gives

Ly = $18,(0,0)(6,4) cos(¢)/r2laa  (5)

Figure 2. Two locations of the coordinate sys-
tem specifying the position of Point P,
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Substitution is made for the quantities cos (£), 1/
r2, and dA, in terms of the angular coordinates and
(5) becomes

L. = 1 86,9)1(6,9) sin(6) sin(y) (6)
®T A [1 - cos(g) cos?(y)}3/2

In order to account for the effects of the observ-
er’s body shadow, introduce function, S(6,¢),
where S(8,y) = 0 where direction (6,¢) intersects
the observer’s body, and S(6,¢) = 1 where direc-
tion (6,¢) does not intersect the observer’s body.
The desired effect is then produced by simply
multiplying the right-hand side of (6) by S(8,y).
Integration of the entire quantity over the surface
of the luminaire gives the background luminance
produced by the entire luminaire,

3 1 \Il'z )
W I
Bb(971/))l(9; w)s(ey lp) Sin(e) Sln(d))

[1 — cos2(9) cos?(yp)P/?

dedy (7)

where the limits of integration are defined in Fig.
4. Note that the limits of integration in the —var-
iable are independent of those of the y—variable.
This is the virtue of the perpendicular plane angu-
lar coordinate system.

Integral (7) is of little computational value since
two of its elements, 8,(8,¢) and I(8,}) are available
only as sets of discrete values, 8(6;,¥;) and 1(6;,¥;),
produced by photometric measurement. Thus, the
integrand of (7) is replaced with a function F(8,y),
constructed from the available discrete values of
the integrand, which allows simple integration.
Fy(0,y) will be the trigonometric polynomial of co-
sines previously described.

We choose a convenient increment size in § and
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Figure 3. Geometric details of task position,
viewer orientation, and luminaire.

¥, equal to 7/32, and assume that the sets of data,
Bu(0:;,¥;) and I(6;y;) are available with this step
size. The function takes the form

63 63

Fo(6,9) = Zo Z() An €OS(MO) cos(ny);

6,y in radians, (8)

with
264 —m) | Sm[sz ]:l
a = X
mn 642 657
2(64 — n) Sln[32 ] 2,32,
642 + 657 Z Z
i=0 j=0
m .
4f(i,j ) cos [ﬁmz] cos[3—2n]]
m=20,..., 63
n=0..63

Figure 4. Limits of integration.
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and
Ap,o <— am,o/z, m = 1, .y 63
Ao,n < ag'n/z, n=1 , 63 (10)

Qp,0 < ao, 0/4

The backward arrow in (10) means replace with.
The operations on the coefficients indicated in
(10) allow the summations in (8) to be taken with-
out any of the summends being halved, thus the
tick marks do not appear in (8). The data values
indicated by f(i,j) in (9) are the discrete values of
the integrand of (7) and are expressed as functions
of i and j by

(i, o) (i ‘;2]-) y

o T T (i
3232/ Sl“(32 "\32/

fi,5) = 7 \13/2
[1— cos(32 )cos(3— )]
i=1,...,31
i=1,...,31

Under the assumed behavior of the BRDF of the
target’s background, we define f(i,j) = 0 for i = 0,
32 or j = 0, 32. Function (8) is substituted into the
integral (7) to give

L=d [T 5T

m=0 n=0

a,,,,, cos(mo) cos(ny)dody.
Term by term integration is allowed, which gives

A
b227§)'§x

[Si;l(mez) — sin(m91)] <
LlﬂQﬂ m

sin(n¥,) — sin(n¥,)
[ 2 1 ] (11)

Definition of the summends when m or n are zero
is obtained from L’Hopital’s rule:

limit [ sin(mO,) — sin(mO,)
0

m-~

limit [sin(n\Ifz) - sin(n\Iq):l .
n-0 n

Effectively then, when m or n is zero, the sine
functions are to be ignored and the angles them-
selves are subtracted. Division by m or n is also ig-
nored. This special handling when m or n is zero
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will be indicated by a slash through the summa-
tion sign. For other values of m and n, the coeffi-
cients can absorb the division by m or n, giving
further permanent modifications to the coeffi-
cients:

Upn ~— Amu/mn; m = 1, ..., 63;
n=1..., 63
Ay n < Gy /n; n=1 ..., 63
Ap o < Ay o/m; m=1,..., 63

Finally, grouping all the operations together,
Equations (12), (13), and (14) are obtained

63 63
=TT a,fsin0m0,) — |sintmo)sin(re,) — sin(wyy)] (12)
mal) =0

with

= A[z«u m s‘“(_z"‘)][z(mw n) =““(:sz )]:’f; ’z’n: N ]

657 657
4/(L])cos(3"2 ) os(:,%jn)

a”«——#, m=1,...63 (13)
a . 4_%1;‘1 n=1 63

L6%hn=1,...,63

Ay *— Auo/mu;m = 1, ..

ﬂ'(?’;i'?;j)’(fgi';'lzi) (32 32’) s“‘( )s“‘(az’) i=1

[1 - cos’(szi) cos (32) ]”2 j=1,...,31

The a,,, defined in (13) and (14) are unique to
particular sets of BRDF data, 8(0,), and intensity
distribution data, I(6,y)). They need be calculated
only once for a particular luminaire and visual tar-
get combination. They are independent of lumi-
naire or target position in the room. Expressions
similar to (12) through (14) can be obtained for the
task luminance by simply substituting £.(8;,¢;) for
Bs(8,¢;) in (14). If the illumination at the task is
desired, the BRDF data is removed altogether.

We now apply Equation (12) to a typical room
condition. First assume the conditions as shown in
Fig. 5. A cartesian coordinate system is established
with origin at any convenient corner of the room.
The x-y plane is at the floor. The target location
coordinates are indicated by (X,,Y,,Z) where

{14)

fa.3) =

S = 1,...,S.

All target locations are assumed to have the same
height, Z. The R possible x-coordinates and the S
possible y-coordinates define an R x S rectangular
grid of target locations. Edge locations of lumi-
naires are specified by (x,1,x,2) and (yu1,yv2)
where

v = 1,..., V.

The U possible pairs of x-coordinates and V possi-
ble pairs of y-coordinates define a U x V rectangu-
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lar grid of luminaire locations. The target is posi-
tioned at (X1,Y1,Z) and the background luminance
due to luminaire A1 is

63 63
Lo(1,1) =ZE

[sin(m- tan” (1;)41[1{ __;1))

sin (m tan™! (iﬁl —_yz1 ))] X

R L
X2 T X

The appropriate arctangents have been used to ex-
press the angles. The background luminance due
to the other luminaires in the A-row (A2,A3,...)
can be calculated similarly. All these luminaires
share the same y-coordinates; therefore, when the
expressions are added together to give the back-
ground luminance due to all the luminaires in the
A-row, the following is obtained:

[; I:sm(n tan-! (ﬁ—ffi_:%)) —
sm(n tan™! (%_f_—:_xz]))]] (16)

Similar reasoning will lead to an expression like
(16) for the B-row luminaires. The only difference
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is that the y-coordinates in the two arctangents in
the first set of brackets are those for the B-row.
The entire quantity in the second set of brackets is
exactly as that in (16). If all the resulting “row”
equations are added, we obtain

=% a3 %

m=0 n=0

[sin(m-tan <MH : ad >)
(i (][
[sin(n- tan™! (%)) -
Sin(wtan" <i”2H—__;))]] (17)

Equation (17) gives the background luminance of a
target located at (X{,Y1,Z), due to the entire array
of luminaires, U x V. A similar expression results
for the task luminance. The target location is
changed by substituting the appropriate target
coordinates for (X1,Y1,Z). As will be seen below,
the entire expression need not be re-evaluated for
each target location.

The algebraic and computational congestion is
relieved by the definition in Equation (18).

Y, — -
S60m,s) = O [sin(m-tan"(Mﬂiz))f sin(m-tan"(””—l) )J
vl Yot = Vs M T Vs
m=1,..., 63
$ - MH
56(0,s) Z [tan ( 2 ) tan~ (————— )]
=l Yo ~ ¥s Y — ¥
< [ ( (V]H -z : MH - 2
Z sin{n-tan” - ) - sin{ n-tan™!
et Xy T Xt A
n=1,..

St0,7) = :’g [tan" (—YL—::I — z ) - t_an" (———‘?’H 2 )]

- N Nuz T Xq

(18)

Sin,r)

Using these quantities for target location
(X,,Y;,Z), Equation (17) becomes Equation (19a).

-
/

X32

e = i
o ———

Figure 5. Application of Equation (12) to a
typical room condition.
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63 63

Ly7,8) = D D @pyS60m,s)Sp(n,7) (19a)

m=0 n=0

The task luminance at the same location is given
by

63 63

L(r,s) = 2 20 CppSOm,s)-SP(n,7) (19b)

m=0 n=0

Where the coefficients c,,, are calculated using the
BRDF of the task. Note that the quantity S6(m,s)
is a function of y-coordinates only, and Sy/(n,r) is a
function of x-coordinates only. Full advantage of
the separated variables (r,s) in (19a) or (19b) are
shown below:

Ly(r,s) =
63
~ v = 1, Py R
| ;0 S6(m,s)Sp m,7)  _ _ 1,....8
where
- 63 m=20,..., 63
Slp(m,’i’) = am,,SZ/)(n,V) v = l, . euy R

n=0

A similar scheme is used for calculating the L.(r,s):

The computation of the coefficients of (19a) and
(19b) assumed the same specific viewer orientation
(north) at each target location. If the luminaire is
completely asymmetric, new sets of coefficients
must be calculated for each viewer orientation,
and Equations (19a) and (19b) re-evaluated. This
is because the relationship of the BRDF values to
candela values of the intensity distribution is
changed for each viewing orientation. If the lumi-
naire exhibits symmetry in the four octants of the
hemisphere of its distribution, multiple calcula-
tion of coefficients for different viewing orienta-
tions can be avoided. Since most commercial light-
ing equipment exhibits this type of symmetry, an
explicit development for this case is included.

Under the assumption of octant symmetry, the
intensity distribution data has the following prop-
erty:

1[3121 312]] - 1[%(32 —9), 3—7;]] -
I[BEZZ (32 —j)] -

T o T o l:l,,16
1’[32(32 i), 35(32 ])] j=1,... 16

(20)

The target exhibits symmetry in its BRDF values
only about the plane containing the viewer’s line of
sight. For north viewing, this means that symme-
try exists in the ¢ coordinate. The BRDF data,
thus, has the property for north viewing in Equa-
tion (21).
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i=0,..., 32

By(04,¥;) = B(0;,039.5) j=20,...,16
(21)

i=20,..., 32

B:(0,¥;) = B(64,¥39-5) j=0,...,16

The f(i,j) of Equation (14) are now defined using
the BRDF and intensity distribution data which
obey relations (20) and (21) respectively. Some te-
dious algebra will show that

m=0,..., 63
n=135,..., 63

192 ¥y

(22)

Amn = Cpn = 0

The coefficients with odd n have become zero be-
cause the symmetry is assumed to be in the y vari-
able of the coordinate system.

If the viewer’s orientation is rotated 90 degrees,
there is an east viewing direction, and in this case
the coefficients a’ ., and ¢/, are such that

1,3,5, ..., 63
14 —_ ’ 1YY ’
@ mn= € 0,..., 63 (23)

m =
mn mn:O
n

The symmetry is now in the 8 variable and the
coefficients with odd m are equal to zero. 1t is not
necessary to calculate coefficients for south or west
viewing. Figs. 3 and 5 show that the background
and task luminances for south viewing can be cal-
culated using (19a) and (19b) with the north view-
ing coefficients, a,,,, and (x — ) substituted for
the O in the calculation of the S6(m,s). Since there
is symmetry in the y-variable, substitution of (= — -
¥) for ¥ does not change the results, so the S¢(n,r)
are left unmodified.

More tedious algebra will show that if (x — ) is
used for O in the S8(m,s), those with odd m have a
reversed sign, the absolute magnitude is un-
changed. The S6(m,s) with even m are exactly as
before. Thus, for south viewing, (19a) and (19b)
are used with the north viewing coefficients, a,,,,
the same S8(m,s) and Sy (n,r), but multiplied by a
factor of (—1)™. Similarly, for west viewing, (19a)
and (19b) are used with east viewing coefficients
a’mn, the same S8(m,s) and Sy (n,r), multiplied by
a factor of (—1)~.

Finally, Equation (24) is obtained.

63 32
LoV Shostn = 2 ):; Ay 2ng" SO0, s YSY(20 ~ 2,7)
mal n=

61 32
Lo(r,8)aoutn = Z; Zl A, 202°580m, S P SU20 ~ 2,7)-(=1)"

6 2
Ly{r,S)ast = 2 2. @'pmg,nS8(2m — 2,5)Sn,7)
w0 mal

(29
63 32

Lo(rS)uest = 2 2 @ gy, nS8(2m — 2,5)S802,)(—1)"
nad mal

Task luminances are obtained by substituting
C¢mn and ¢y, for am,, and a’,, in Equations (24).
Note that all equations use the same S6(m,s) and
Sy(n,r). The algorithm in Appendix A groups the
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computation of Equations (24) so as to take ad-
vantage of the separated variables (7,s).

No assumption concerning uniform spacing of
rows or columns of either luminaires or target
locations has been made. However, Equations (24)
do assume that a luminaire exists at each intersec-
tion of the rectangular grid U x V. The luminaire
array shown in Fig. 6, taken as a whole, does not
have this property. This array can be decomposed
into two subarrays: one indicated by cross-hatched
luminaires, the other indicated by open lumi-
naires. Each of these subarrays, considered sepa-
rately, has a luminaire at each intersection of its
respective rectangular grid, and fulfills the re-
quirement for use of Equations (24). In this case,
Equations (24) are used twice, first using the
S6(m,s) and Sy(n,r) calculated for the first subar-
ray, and then using the S8(m,s) and Sy/(n,r) calcu-
lated for the second subarray. The two resulting
values of background luminance at each target
location are added to give the total due to the en-
tire luminaire array. The same is done for the task
luminances. The coefficients a,,,, @’ ;mn, €mn, and
¢’mn are used in the calculations in both subarrays.

If the luminaire layout is comprised of two lumi-
naire types having different intensity distribu-
tions, then the layout is decomposed into two sub-
layouts, each having its own set of coefficients.
The computations then proceed as discussed. Two
orientations of a totally asymmetric luminaire (as
in a perimeter layout) must be considered as two
types of luminaires, since the different orienta-
tions change the relationship between the candela
values and the BRDF values. If two orientations of
a luminaire with octant symmetry are present,
then the north and east viewing coefficients of one
sublayout can be used as the east and north view-
ing coefficients, respectively, for the other sub-
layout. The extra set of coefficients need not be
computed.

Appendix A contains all the equations of this
procedure in algorithmic form. Some important
computational details have been included. Appen-
dix B contains an algorithm for the conversion of a
luminous intensity distribution from spherical
coordinates to perpendicular plane angular coordi-
nates.

Part ll—Reflected component computations

This procedure is for the calculation of the re-
flected component of the task and background lu-
minance of a target positioned anywhere in a
room. A finite element method is used to calculate
the approximate room surface’s luminance pattern
due to the inter-reflection of light. The manner of
discretization divides the x-dimension of -the room,
X, into R equal segments, the y-dimension, Y, into
S equal segments, and the z-dimension, Z into T
equal segments. The coordinates (x,y,z) are carte-
sian, with the origin at a corner of the room and
the x-y plane coincident with the floor.
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Figure 6. Diagram showing an array of luminaires. The array
can be decomposed into two subarrays; one indicated by
cross-hatched luminaires, the other by open luminaires.

With this discretization scheme, two opposing
walls will have SxT identical elements, the other
two opposing walls will have RxT identical ele-
ments, and the floor and ceiling will have RxS
identical elements.

Reflectances are assigned to each element by de-
termining the type of surface contained within the
element’s borders. Since the discretization in any
dimension is uniform, it is possible for an element
to contain a section of, say, chalkboard and room
wall, each with its own reflectance. A weighted av-
erage reflectance, based on area, can be used in
such cases to assign a reflectance to the element.
All reflectances are assumed lambertian. Fig. 7
shows the discretization of a typical room wall.
Within the limits of the lambertian reflectance as-
sumption, the approximate luminance pattern
converges to the actual continuous luminance pat-
tern as the elements are made smaller, and, conse-
quently, their number increased.

To calculate the initial illumination at each of
the element’s centers, an equation similar to (19a)
is used. It will yield the illumination at any point
in the room from an entire array of luminaires.
The coefficients will determine whether the calcu-

Figure 7. Discretization of a typical room wall.
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lated illumination is horizontal or vertical. The
derivation is completely analogous to that in Part 1
and need not be repeated. The quantities S8 and
Sy will determine the point in the room where the
illumination is calculated. Their derivation is the
same as in Part I and will be omitted; all notation
is the same as that in Part L

All unique S8 are defined as'follows: the coordi-
nate system used for discretization is retained; a
rectangular array, UxV, of suspended luminaires is
assumed (Fig. 8 shows the geometric details). The
wall coincident with y-z plane at the coordinate
origin is labeled Surface 1; the other walls are
numbered consecutively, moving clockwise around
the room, when seen in plan view. Thus, Surface 3
is opposite Surface 1, Surface 4 is the x-z plane at
the coordinate origin, and Surface 2 is opposite
Surface 4. The floor is Surface 5, and the ceiling is
Surface 6.

For our present purposes we need the illumina-
tion at each element’s center. Fig. 8 shows a typi-
cal pair of 8 angles for an element center on Wall 1
and the first row of luminaires. These angles de-
pend only upon the y- and z-coordinates of the el-
ement’s centers (y,, s =1,..S;Z,t=1,..,T)and
the y-coordinates of the rows of luminaires. Given
the V pairs of luminaire row coordinates, (y,1,yv2)
v=1,...,V, and the element center coordinates
(ys,z), all S8 can be defined that are used in the
calculation of illumination on Wall 1. The same S0
can be used for Wall 3, since the discretization is
identical, and S are not functions of the x-dimen-
sion. Now, if the z¢ coordinate is set equal to zero,
and the y;-coordinate is allowed to range from y,
to ys, then all the S8 needed to calculate the illu-
mination on the floor are also defined. With a 2741
coordinate equal to Z, those S8 needed for the ceil-
ing computations are included. If the vy, coordinate
is set to zero and the z; coordinate is allowed to

range from z; to z7, the S0 needed for Wall 4 com-
putations is defined. Setting the ys.; coordinate
to Y and letting 2z, range as before, will include the
S0 needed for Wall 2. All unique S8 are thus given
explicitly by Equation (25).

Solm,s,t) = é {sjn[m.tan-l {IMH_—ZLI}] _

Yt ~ Vs
. - LMH—fLI}]} -1 63 s=0...,8+1
sln[mtan {y.‘—y, ym=1,..., f=0 .. T 1
v
S000) = 3 frawt {8} s (30— i)
i Vo1 < Ys Y Y
where (25)
y,=%+sl(s—l) s =1 S
aegvEue-v t=1..7
Vo= ysy=7Y
2,= 0,294 =2

Similar reasoning leads to the definitions in Equa-
tion (25a) for all unique Sy needed for illumina-
tion calculations in the room.

[
Siln,r,t) = Z{sin[wtan" %Tz,_l}] -
=] W T Xy
. | MH — 2,1 r=0..,R+1
stan~! bk = . g >
sxn[ntan {xdfx, }]},n_l,...,ﬁa (=0 ... T+1
v
- IMH—zI} _{|MH—Z|}}
= 1 £ _ tan-t 2
SuOrh) = § {"m { Xug — % i P
where
X X
= = L2y — =1,...
x,_2R+R(r 1y r y oo R
zZ  z
==+ 2@ - =1...,
2 =gp ¥ T(l 1) ¢ s T
Xp = 0; Xyt = X
2, = 027,y = z

Three sets of coefficients are needed to calculate
the three conditions of illumination present in the
room: horizontal, vertical one (as on Walls 1 and 3)
and vertical two (as on Walls 2 and 4). These coef-
ficients are indicated H,,, and V,,, respectively.
All three sets are calculated using Equation (13),
with the f(i,j) defined for each set in Equation (26)

Figure 8. Geometric details for determining S@
quantities.

=7
s

A
A
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for H,,, f(Z’]) = 1(3!21', 3!2]')'

sm(32 ) +sin (512])
(1o () oo (2]

j=1,..., 31
j=1,... 31

for V1., fG.j) = Iz, g

i=1,... 31
j=1,...31

In all three cases, f(l,]) =0ifi=0,320rj =0, 32.
This is equlvalent to assuming that the luminaire’s
distribution is such that there is no luminous in-
tensity when 8 or ¢ is equal to zero or pi. This is a
forced assumption because the coordinate system
becomes indeterminate at these angles. The f(i,j)
of Equations (26) are derived exactly as those in
Part I, Equations (14). Here we are dealing with il-
lumination rather than luminance and so the
BRDF (Bidirectional Reflectance Distribution
Function) and body shadow functions are omitted.

The equations for the initial illumination at all
element’s centers are

63 63
E(L,s,t) = 2. 2 V1,,°560m,s,t)Sb(n,0,t)

m=0 n=0

63 63
E@urt) = 2 > V2,,S00m,S + 1)
m=0 n=0
S(n,7,t)
63 63
EB3,s,t) = D, Z V1,,S0(m,s,t)-
m=0 n=0
Sy(n, R + 1,1)

63 63

E(477‘7t) = Z Z Vzmn.se(vaJ)'Sw(n’y,t)
m=0 n=(

63 63
E(5,7,s) = > Z H,,*S6(m,s,0)*S¢(n,7r,0)

m=0 n=0
(27)
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As in Part I, Equations (27) are the general case,
applicable for luminaires with a totally asymmet-
ric intensity distribution. These results can be
considerably abbreviated if the luminaire is as-
sumed to have octant symmetry in its hemisphere
of distribution. The present case simplifies further
than was possible in Part I, since there is no BRDF
function to introduce any asymmetry. Equations
(25) through (27) are restated (in detailed form),
making use of assumptions of symmetry [See
Equations (28) through (31)]

31 31

E(l,st) = 2. 2 V1,,:500m,s,6)86(n,0,0)
g e
31 03

E@urt) = 2. X V2,,:560mS + 1,0:-Sibn,r,0)
m=0 na0
a3

E@,5,0) = 2 O V1,,S6bms.0)Setn.R + 1.1)
m=z0 n=0 (28)
31 3

E(@d,r0) = 2 2 V2,,860m0.0)-Silnr,6)
m=0 =)

31 31
E(,r,s) = 2. 3. HprS60m,s,0)-5U(n,7.0)
m=0 n=0

31 31

E®,7,s) = 2, 2 HpwS8(m,s,T + 1)8iln,r,T + 1)
0 )

where

v MH —
Selm,s,t) = Z {sin [Zm-tan {l_”%\zﬂ}]
wel
T | MH z,I}]} _ 1=0...,7T+1
sm[than {——7’ ym=1,...,31 s=0,. S +1
v
solowss) = 3 {m {IMH ~ Z.I} - tan"! {'i”i:_ﬂ'}}
pord Yo =¥ ¥ T ¥,

(29)

Sgln,r,t) = 'Z: {sin[Zn-tan {LM‘_H_ZA'}] _

- x

. . |1m1—z,l}]} _ t=0..,T+1
sm[zntan {——,z~x yn=1,...,31 y=0 ... R+1
v
SHO ) = 3o {m* {w;ﬁ‘} tant {W;ﬁ'}}
i Xup T Xy X~ X,
X, = 0 vo=0
X X AN TP
% =gpt RO =1L R Ys=gg gl ~1hs =1 s
xpy = X You =Y
2,=10
z,=227+%(t—1)t:1 T
Zra =2
and
sin ut sin 2
oo alze2-m (ﬁ"‘ 232 ~n) | (15") N
~= A 327 (32.5)7 321 (32.5)7
15 , 16
LW T \m=20...231
Z Z £.j)cos (_"“) “’5(16'”) w0 . .31 80
with
Vi, =— V1 /@ma)ym=1...,3%;»n=1..,31
(31)
Vi, “— V1,/(4m) V1,3 +— V1, 4/(@m62); m=0...,30
Vi, =— V1,/(4n), Vi, <— Vi, /(2n62); n=1..,30

Vi «— Vi/d; V1 gy «— Vi, 3y/(262); V1, «— ¥y ,/(2:62)

Vigg «— Vlgy 91/(62:62)

The f(i,j) for the coefficients V1,,, are given in
Equation (26). The coefficients V2,,, and H,,, are
calculated in exactly the same fashion, with the
appropriate f(i,j) from (26) being used.

Up to this point it has been assumed that the lu-
minaire has no upward component in its intensity
distribution (although it has not been assumed
that it is recessed or surface mounted). Thus
Equations (28) through (31) are used only for
values of t such that z; is less than the luminaire
mounting height. The illumination at element’s
centers with z; greater than the mounting height is
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set to zero. If the luminaire does have a downward
and upward component, it has proved convenient
to proceed as follows. Consider the actual lumi-
naire to be composed of two sub-luminaires: the
first with the upward distribution, and the second
with the downward distribution. The two sub-lu-
minaires have the same layout, with the first sub-
luminaire pointed toward the ceiling and the sec-
ond pointed toward the floor. Each sub-luminaire
has its own sets of coefficients V1,,,, V2,,,, and
H,,,,. Which set is used in Equations (28) is deter-
mined by whether the z; coordinate of the ele-
ment’s center is above or below the mounting
height of the actual luminaire.

If the luminaire has only an upward distribu-
tion, then its set of coefficients is used in Equa-
tipns (28) for element’s centers with 2, coordinate
greater than the mounting height. All other points
are assumed to have an illumination of zero. Some
savings in time can be gained by calculating the
S6(m,s,t) and Sy(n,r,t) of Equations (29) only for
those values of t that will actually be needed by
Equations (28). But savings are miniscule.

As discussed in Part I, if the same luminaire is
used in more than one rectangular array, a set of
S6(m,s,t) and Sy /(n,r,t) is calculated for each array.
The same set of coefficients is used in these cases.
If more than one luminaire type is used, a set of
SH(m,s,t), S¢(n,rt), and coefficients is calculated
for each.

An approximate solution technique for the radi-
ative transfer problem is now defined, which is ef-
fective when the number of finite elements is
large. Using the notation established in (28)
through (31), the following quantities are defined:

L(i,j,k) = final luminance (after inter-reflec-
tions) of element (j,k) of room surface i.

p(i,j,k) = lambertian reflectance of element (7,k)
of room surface i.

C(i,j,k)(a,b,c) = radiative exchange factor from
element (j,k) of surface i, to element (b,c) of
surface a.

If the Gauss-Seidel iteration scheme is used to
solve the radiative transfer equations, then at each
iteration the following gives the current estimate
of any element’s final luminance:

LG,jk) = plij,Fk) [E(z-,j,w 4

6 fa) K(a)
Z c(i,j,k)a,b,c)L(a,b c):| (32)
a=1 b=1 c=1
axt Z — 1 6
i =1,..., J@)
P =1, ... KG3G

Room surface number a is not allowed to equal
room surface number i since it is assumed that ele-
ments on the same room surface cannot see one
another. The summation limits  and K are indi-
cated as functions of room surface number since
the number of elements varies with the surface.
Equation (32) defines one complete iteration and
is used repeatedly until the change produced in
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any element’s luminance is sufficiently small. It
gives the usual solution to the radiative transfer
problem in that every element of every surface is
related to every element of every surface. It has
the drawback that the number of radiative ex-
change factors used, and the number of computer
operations performed, at each iteration is propor-
tional to the square of the number of elements.

A simplification can be derived as follows: the
problem is constrained so that each element of
each surface is related to each whole surface and
its average luminance. The required radiative ex-
change factors C(i,j,k)(a) is defined

a) K(a)
C(i,j,k)(a C(i,j,k

c=1

=

Xa,b,c).

<o
1
fory

Thus, each element of each surface is related only
to every whole surface. Each iteration of the
Gauss-Seidel scheme simplifies to

L(i,j,k) = pli,j,k) x

6
[Eu,j,k) > c<z',j,k>(a>-L<a>] (33)

axi

i=1...,6
j=1,..., J@)
P=1 ... K@)

Where L(a) is the current estimate of the average
luminance of surface a:

J(a) K(a)

La) = ZZLabc

b=1 c=1

Near the edges of a room surface, Equation (33) is
prone to calculate luminance different from those
obtained with Equation (32). The differences have
not proven to be important. Equation (33) is suc-
cessful because the variation in luminance on a
room surface is usually produced by the variation
in the initial illumination, rather than variations
in the manner in which light is interreflected.
Equation (33) accounts for the varying initial illu-
mination but only approximates for the variation
in inter-reflected light.

Calculation of the task and background lumi-
nance of a target at any position in the room, due
to the luminances of the room surface elements,
can be a very clumsy process. Expressed in terms
of perpendicular plane angular coordinates, the
following rigorous definition is for the target’s
background luminance:

Lb(x’y) = j;" L”Bb(Q,w)L(&Z/),X,y,Z) X

sin?(9)*sin®(y)
(1 — cos?(9) cos?(y))*

dody (34)
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L(8,y,x,y,2) represents the luminance seen by the
target in the direction (8,y), when the target (coor-
dinate origin) is at (x,y,z). This luminance func-
tion makes the integrand of (34) a particularly
nasty function of target position. A finite summa-
tion is not an improvement since an awesome
amount of interpolating must be done, even for a
moderate number of target positions. -

It is possible to couch (34) in a form that reduc-
es to a very simple function of x and y. Start by
considering a one dimensional version of the prob-
lem. Assume a set of arbitrarily spaced data, f(«,) r
=0,..., R, and a set of equally spaced data 8(j) j
=0,..., 2N. The sum over r of the products f(«,)
and B(a,), are desired with the 3-data being inter-
polated as necessary:

R
Z_o fla,)pl@,);0 = a =2V (35)

A schematic representation of the relationship
between f(a,) and 8(«a;) is shown in Fig. 9. If the f-
data were spaced similarly to the §8-data, a simple
lagged product would give the desired result of
(35). The following construction procedure is used
to give the results in lagged product form. The
first datum f(ap) of the f-data is considered sepa-
rately. A new set, fo, is formed with f(ag) as its first
datum, the other data are set equal to zero and
spaced like the 8-data, thus

fO = f(ao), 0,0’0,0, .o

for a total of 2N + 1 values. Sum of products is:

2N
Zof,,(km(k + a,) (36)

This is a conventional lagged product, thus:

2N

(2N + 1) 2. F(2N + 1 — n)Bln)
n=0

. 2mna ) . 1/2
— 7o J. — (=
exp (zZN 7 ) where i = (—1) (37)

Fo(n) and B(n) are the complex fourier coeffi-
cients of the fo-data and $8-data, respectively. The
complex form is used to avoid a jungle of sines and
cosines. The symbol Wiy, will be used to indi-

1@ | fay qraz) cgfs) 1@y
! fo !
| Lol e
l Lol | " s
Y IR T . LR B 4 s
0 l 1 | ' 2 | 5
do a 9 a3 a4
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cate exp (i2xj/2N+1); i = (—1)1/2, Equation (37)
gives the product of f(ap) times an interpolated
value of 8, B(ap). This is true since only the first
datum of the fg set is nonzero.

Another set is formed, f;, with f(a;) as its first
datum, and the rest filled with zeros as before. The
sum of products

2N
;} fiR)BE + ay)

has the equivalent form

2N ’
@N + 1) F{@N + 1 ~ n)Bln) Wy "™

n=0
(38)

Fi(n) are the complex fourier coefficients of the f;
data. Equation (38) gives the product f(a;)-8(ay).
Proceeding similarly for the other data in the orig-
inal f-data, and summing each of the results, gives
an alternate form for (35):

R
1 .
W1 5/ s =
2N

> E(2N + 1 — n)Bn)W" + ... +
n=0

2N
Fp@N + 1 — n)B) Wy % = 2 Br)
n={

[ ren s 1 - memg™] o)

r=0

Note that the B(n) are constants, independent of
the data being operated upon. Now the coeffi-
cients, F,(n), are defined in the usual way

Fr(”l) =

2N
—1 ~kn, _
IN + lkZ=0 fi(k) Wopnst ™ mn =0, ..., 2N

where, as above f.(0) = f(a,) and all other values
are zero. Because of the zero values, this reduces to

1 1

—_ . . -0 —_ ——_—
on + 1 /A0 Wan™ = 55—

1
f,.(O) = m-f(a,), n = 0, ey 2N

F‘r(n) =

Figure 9. Schematic representation of the re-
lationship between f(«,) and 8(a,).

139



1!:0’
!
Figure 10. Relationship between f-data and |
shifted 3-data. g :
o i 1
! %
The F.(n) are actually independent of n. The
quantity in brackets in equation (39) is now
grouped to define Fi(n).
R
— n
Fln) = 22 fla,) Way,y ™ (40)
r=0

and (39) becomes

R 2N
2 fla)pla,) = Zo Bn)-Fn)
r=0 n=

If the position of the first datum of the 3-data is
changed from pos1t10n zero to position x, this is
modified to

R
Z_:,)f(a,)'ﬁ(x + a,)

2N

2

n=0

B(n)Fln) Wy y,,™ (41)

The relationship between the f-data and the (-
data in this case is shown in Fig. 10.

Equation (40) shows that the f-data coefficients,
F(n) can be prepared for use in the lagged product,
independent of the 8-data values, or the position
of the 3-data with respect to the f-data. Equation
(41) shows that the B-data coefficients, B(n), are
permanent data, independent of the f-data, or the
shift value x, in the lagged product.

These results are extended to three dimensions
in the following way. The f-data, f(a,, 8s, 7v:) is de-
fined in three-space along with the pJ-data,
B(l,m,n), where

V:O,...,R Q:O,...,2L
S:O,...,S WL:O,...,ZM
z‘:O,...,T n:O,...,ZN
and
0 = =2L;0 = 8, = 2M;
0 =y, =2N

The triple sum (over three-space) of the products
of the f-data is desired with appropriately interpo-
lated values of the §-data. With reasoning analo-
gous to the one dimension case, we obtain
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@) flay fap)
ey 1(%2) (Iga 4 f
1 ]
i T [ [ Mt }
i i
TS I B B B e
it 03 o 5 4 -1 2N
a, a H ! i o | )
+X 2+x 3+x A4+x 5+x 2N-14+X

r=0 s=0 t=0
2L 2M 2N B
')/t) = Z Z B(lymyn).F(lym,n) vV2L+1 :
1=0 m=0 n=0
"V2M+1 y.I/VZN+1 (42)
where
R S T
F(Z,Wl 7”) Z Z Z f raBs")’t W2L+1 o
r=0 s=0 ¢=0
» 1=0,..,2L
Wast Wawat © om =0, ..., 2M (43)
n=2~0,...,2N

As before, the B(l,m,n) are permanent data given
by

B(l,m,n) =
1 2L 24 2N
2L + 1)-2M + 1)-2N + 1) az: bz; cz‘a x
Bla,b,¢) Wa o™ Wyt ™™ Wy ™™
1 =0, , 2L
n = 0, ey 2N

These results are applied to the approximate solu-
tion of equation (34) by letting the luminances of
the room surfaces assume the role of the f-data
and the BRDF of the task and background assume
the role of the 3-data. We assume a 21 X 21 X 11
array of BRDF values of the target’s background.

X = 0, cey 20
By = Bb(x,y,z) y = 07 veey 20
Z = 0, ey 10

The values are arranged so that with the target po-
sitioned at (10, 10, 0), the (x,y,z) define incident
directions to the target.

Fig. 11 shows the direction of view in the y-z
plane, and the BRDF array configuration. A per-
manent set of coefficients, B,.(I,m,n), is formed
with the BRDF values and values of solid angle ap-
propriate for luminances on surfaces which are
parallel to the y-z plane.
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Figure 11. Diagram showing the direction of view in the y-z
plane, and the BRDF array configuration.

20
Bullmn) = grors ST

x=0 ¥=0 2=0

Xz -Ix -m -nz
Bb(xyyyz)(xz + y2 + 22)2 W21 ! W21 3’W11
1 =0, ... 20
m =0, ..., 20 (45)
n=2~0,...,10

To complete the definition of solid angle, (45)
should include the increments A,, A,. These will
be included in the computation of the coefficients
using the luminances. The Wy;2P appearing in (45)
is defined as

a 27ab
Wy® = e"p( 21 Z)

i = (_1)1/2.

where

Similarly for the W,,ab;

a 27ab,
i = o (52

where
i = (_1)1 /2

Two other sets of coefficients, B,,(l,m,n) and
B.y(l,m,n), are calculated in a similar way.
B,.(l,m,n) is used for luminances on surfaces par-
allel to the x-z plane and B,,(I,m,n) used for lumi-
nances of surfaces parallel to the x-y plane. They
are given by Equation (46).

B0 mn)
20 20 10
212111 21 1 Z E Z Bylxx,2) m Wy Wy Wy [ 1 =0, 20
B, {l.mn) = wmo=0,..., 20 (46)
n=290...,10
13030 S IRUR NI S —_——
21 21 ¥ W S s Bylx.y,2 (@ + y2 4 zope 21 11
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In order for the lagged products to be properly
formed, the dimensions of the room must be prop-
erly scaled. The largest of the three principle room
dimension X,Y,Z, designated D, is assigned the
value 10, which is one half of the x or y-dimension
in the BRDF array. Any room dimension, d, is
scaled by 10/D before it is used in any of the equa-
tions.

Three sets of coefficients are formed using lumi-
nances on surfaces of the room which are parallel
to the three principle planar orientations y-z, x-z,
and x-y. The coefficients F,.(I,m,n) are formed
with the luminances of Walls 1 and 3. The
F,.(Lm,n) are formed with the luminances of
Walls 2 and 4, and the F,,(l,m,n) are formed with
the ceiling luminances. It is assumed that the tar-
get is not illuminated by the floor. See Equation
47).

Flollonn) = ﬁi@i Z[L(lsl) +
ST bty
1 =0,. 20
10/ m ne '
L35,y 2 Py " P P 0, Ll 20
v = 0, . 10
= \'Z 100
F,(l,mn) = Z z L{4,n0) +
¢ VR R & m,[ Y (4n)
mygag 1070y 1x 10/D g 10/D 1=0..,20
L(2,7,0)Wy S* Tw, ~ Wy, mo=0,...,20
n=0.. 10
Fol,mn) =
2 1=0,. 20
107 i 10/ my 10/ g
%‘ % Z Z(L(G,V.S)Wnn" ’ D]sz " DWzl P m=0 20
et n=20..,10

The coordinates x,, y;, and z; are those of the room
element’s centers. The arrays L(l,s,t), L(2,rt),
L(3,,t), L(4,rt;, and L(6,r,s,) are those obtained
with either Equation (32) or (34). The index t; is
chosen so that 2z;; is greater than the working
plane in the room. That is, only the luminances of
those elements which have centers above the plane
of the task are considered in the results. The three
factors (YZ/ST)(100/D?), (XZ/RT)(100/D?), and
(XY/RS)(100/D?), express the increment size
needed to complete the definition of the solid
angle. The fact that the solid angle is defined dif-
ferently for the three principle planar orientations
is the reason that three sets of coefficients must be
used.

Now three expressions can be formed similar to
(42) and added together to give the total back-
ground luminance due to the luminous room sur-
face. However, since the target is at a constant
height throughout the room, we can eliminate the
functional dependence on target height, z,,, and
form the combined coefficients all in one step,

10

Fim) = 2 [B,.(l,mn)F

n=0

yell,m,n) +

B, (l,mn)F, (,mn) + B,(l,mn)
Fo(l,m,n)| Wn2uwpl0/D
[ =0, ... 20 (48)
m=0,...,20

Finally, the target’s background luminance at any
position (X,,Y) in the room is given by
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20 20 1(10-x, 10/ D)
Ly(r,s) = 2. 2 BF(l,m) Wy r
1=0 m=0
m(10-Y,10/ D) ry = 1, ..., R
‘V21 S = 1, ey S (49)

The exponential quantities in (49) have a form de-
termined by the fact that the target is assumed lo-
cated at (10, 10, 0) in the BRDF array of values.
The only data preparation necessary to use (49) is
that given by equations (47) and (48).

As can be seen from Fig. 10 and from the fact
that the coordinate directions in the BRDF data
and the room coincide, Equation (49) gives the
background luminance for north viewing. Other
viewing directions are obtained by using other sets
of coefficients like those in (45) through (46), cal-
culated on the basis of different viewing direc-
tions. They need be calculated only once and form
a permanent data base for the procedure. Al-
though this means a large data base, it leaves the
coefficients in (47) unaltered and only the compu-
tations indicated in equations (48) and (49) need
be repeated for the different viewing directions.
Slightly more elaborate schemes have been de-
vised to obtain the other viewing directions with-
out the need of extra coefficients.

An equation for the task luminance is obtained
by substituting the coefficients for the task into
(48). The coefficients of (47), calculated with the
room luminances, are unchanged.

At this point in the overall computation, both
direct and reflected components of the target’s
background and task luminance are known. Values
of ESI at each of the target locations (X,, Yy r =
1,..,R;s =1..,8 follows from the total values
of task and background luminance. The following
equation for the RCS function of luminance repro-
duces the tabulated values of RCS within one per
cent and simplifies this final step.

2.195721274
1

1y ——
RCS = 10[ 2'25(Lb)°2:|; 10 = L, = 1600

The values of luminance must be in footlamberts.
The inverse luminance function of RCS is

.4444444
2.195721274
Log(RCS)

Lb:

The resulting values of luminance are in footlam-
berts.

Conclusion

Two techniques based on finite fourier series
have been introduced in Parts I and II. The first
simplifies the computation of the direct compo-
nent of illumination (or luminance produced by it)
at an array of points, due to rectangular arrays of
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luminaires. Although this technique has been ap-
plied to the computational problem of ESI, it has
much broader applications. For incandescent or
high-intensity discharge luminaires without lenses,
integration over a luminaire opening does not have
direct physical significance. In these cases, the lu-
minaire is considered a point source and the inte-
gration which lead to the quantities Sé(m,s) and
Sy(n,r) is eliminated, and they become sums of
cosines rather than sums of the difference of sines.
These new S6(m,s) and Sy(n,r) are used exactly
as in Equation (19a) and (19b).

The coefficients, as used typically in Equation
(19a), can be calculated to yield illumination in
any required plane, so called scalar illumination,
or (as was done in Part I) luminances based on a
set of BRDF data; all at a large array of points.
The computational work involved being propor-
tional to the square root of the number of points.

The first technique’s most powerful extension
will probably be in the area of design synthesis.
The basic equations are so simple that it is practi-
cal to drive them with an optimizing algorithm. A
design requirement would be established, such as
an average illumination level, an average ESI level,
an array of required ESI levels, or an array of re-
quired illumination levels. The optimizer would
find either the luminaire layout (given the intensi-
ty distribution) or the intensity distribution (given
the layout) which best meets the design require-
ments. Research in this area is currently under
way.

The second technique simplifies the computa-
tion of the reflected component of illumination (or
luminance produced by it) at an array of points,
due to the luminous interior surface of a parallele-
piped. As with the direct component technique,
this can be used to determine other quantities of
engineering interest. The second technique has
several merits. The overall computational work is
only slightly dependent upon the number of dis-
crete luminances used to approximate the continu-
ous pattern in the room. No explicit interpolating
is necessary, it is contained in the lagged products.
The final result is a simple function of the two po-
sition-variables in the room. Such is the power of
fourier analysis. The most useful extension will
probably be an application to daylight calcula-
tions. The BRDF data for the standard pencil tar-
get, in equal increments of the perpendicular-
plane angular coordinates, are available from the
author.

APPENDIX A

The following shows a complete algorithm for
the calculations of the direct components of back-
ground luminance (L) and task luminance (L.).
Luminaires with octant symmetry are assumed.

1. Establish an Rx S rectangular grid of
target locations:
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(X,.,Ys)’}’z 1,...,R
S = 1, ey S
Z assumed constant

2. For each luminaire type, do Steps 2.1
through 2.2.

2.1 Calculate coefficients a,,,, @' ., Cmns
and ¢’,,using Steps 2.1.1 through
2.1.5.

2.1.1 Calculate f,(4,5), fa,(2,5), f.(2,5),
fo(i,j) using Steps 2.1.1.1 through
2.1.1.5.

2.1.1.1
7
Tid) = (32” 32]) S"‘(sz) “(ﬁf
e 1 — cos?( Zi) cos?( %i 372
32 32/
i=1,..., 16
j=1,... 186
2,1,1.2
. T T, 7.\, .
fa(ZJ) = B (321’32] )8(322,§§Z> (27])
=1,..., 16
j=1,... 16
T. W, T, W,
falinf) = Bb(322,3—2]> ( ,3—2]> x
i = 17, ..., 31
1(32 —4,7) j 1, 16
. . L oi=1...,31
flbd) = L6832 =005 _an, e
. i =0,32o0r
Jdig) =0 j =0, 32
2.1.1.3
.. T, O,
fa'(z,]) = Bb(ﬁ]’ﬁl >S( 32],32 )I(Z’])
i =1, , 16
j =1, , 16
T, L
. i =1, , 16
(082 - j) j = 17, . ,31
- =131
Swlirj) = Fu(32 = ij) j=1,... 31
. i = 0, 32 or
fa'(ZJ) = 0 ] — O, 32

2.1.1.4 7,(i,j) calculated as in Step
2.1.1.2 with g, substituted
for g,
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2.1.1.5 f_(¢,j) calculated as in Step
2.1.1.3 with g, substituted
for g,.

2.1.2 Calculate the intermediate
quantities A(k,l1), A'(k,1), C(k,1),
and C’(k,l) using Steps 2.1.2.1
through 2.1.2.4.

32
2.1.2.1 Akj) = > folirj) °°S<32”")
i=0

E=0,... 32
i=0, ... 32
then 32
AkD) = X" A(k,j) cos (—”zjzz)
j=0 3
E=0,...32
I =0, ... 31

32
2.1.2.2 A'(k,j) = D> fuli,j) cos
i=0

Tie. k=0,...,31
(3_2k22>j =0, ... 32

32

then A'(k,l) = Z" (k,5) 005< ]l)
= 32

E=0,... 31
1=0,... 32
The recursion cos{ng) = 2:cos(9)*

cos((n — 1)9) — cos((n — 2)8) should be
used in Steps 2.1.2.1 through 2.1.2.2.
2.1.2.3 C(%,l) calculated as in Step
2.1.2.1, using £,(i,).

2.1.2.4 C'(k,l) calculated as in Step
2.1.2.2, using f,.(,j).

2.1.3 Calculate the intermediate
quantities ©(7) using Step 2.1.3.1.

2.1.3.1 6(i) =

2[2(64 — z') sin <32 ):|

2
64 657
i=20,...,63

2.1.4 Calculate coefficients using Steps
2.1.4.1 through 2.1.4.4.

2.1.4.1 atm,n) = Om)-0(2n)Alm,n)
1/01 m = 0, o ey 32
n=0,... 31

143



a(m,n) = O(m)+O(2n)+ A(64 — m,
n)l/a m = 33,..., 63
n=20,... 31

where @ = area of luminaire

2.1.4.2 a'(mn) = 62m)-0Mn)A (mnn)
l/a m = 0, , 31
= 0, , 32
a'(mmn) = 0(2m)6(n) A’ (m,
64 —n)l/aa m=0,..., 31
—33,... 63

2.1.4.3 c(m,n) calculated as in Step
2.1.4.1 using C(m,n).

2.1.4.4 ¢'(m,n) calculated as in Step
2.1.4.2 using C'(m,n).

2.1.5 Modify all coefficient using Steps
2.1.5.1 through 2.1.5.4.

2.1.5.1 a(m,0) <— alm,0)/(2+m)

m = 1, ceey 63
a(O,n) <— a(O,n)/(4n)
n=1... 31

a(0,0) <— a(0,0)/4
alm,n) <— abm,n)/(2mn)
m = 1, .oy 63;7’1 = 1, vy 31

2.1.5.2 a’(m,0) <— a'(m,0)/(4m)

m = 1, e, 31
a'(0,n) <— a’(0,n)/(2n)
n —= 1, oo ey 63

a'(0,0) <— a’(0,0)/4
a'mn) <— a’ (m,n)/(2-mn)
n=1...,63m=1,..., 31
2.1.5.3 c(m,n) modified as in
Step 2.1.5.1.
2.1.5.4 ¢'(m,n) modified as in
Step 2.1.5.2.
2.2 For each sublayout of luminaire,
do Steps 2.2.1 through 2.2.4.

2.2.1 Calculate S6(n,s) and Sy(n,r)
using Steps 2.2.1.1 through
2.2.1.3.

2.2.1.1 Establish the U/ x V rectangu-
lar grid of luminaire locations

(Xuz’ xui): (yv2, yv1)
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Yor = Yo T 3:/2

Yot = Yy = ¥i/2

Kyp = X, + %,/2

Ky = Xy — %;/2

where y, = y-coordinate of center of

luminaires in vik row
vy, = y-dimension of luminaire
x, = x-coordinate of center of
luminaires in ufz column
x, = x-dimension of luminaire.

2.2.1.2 Calculate intermediate
quantities ATV2(v,s),
ATV Hv,s), ATU2(u,r), and
ATU 1(u,7) using Steps
2.2.1.2.1 through 2:2.1.2.2.
2.2.1.2.1

ATV2(v,s) = tan™? (1\_4}_{_1)
Yur — Vs

ATV 1(y,s) = tan (M{————Z)

Y2 = Vs
v=1...,V
s=1...,8

2.2.1.2.2

ATU2(u,7) = tan’ (MH — Z)
Xyt — Xy

ATU 1{u,r) = tan (MH — Z>
Xy2 Xy
u=1...,U
Y = 1, ..., R

MH is the mounting height of
the luminaires. Arctangents
must be in the quadrant deter -
mined by the quotient of the
arguments.

2.2.1.3 Calculate So(n,s) and S¥(n,r)
using Steps 2.2.1.3.1 through

2.2.1.3.2
2.2.1.3.1 S60m,s) Z{sm (me
ATV 2(p,s)) — sin(me
m=1...,63

ATV He,s)} ¢ _

$6(0,s) = 2 {ATV2(¢,s)—

v=1

ATV1(v,s)t s = 1,..., S
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U

2.2.1.3.2 Sy(n,r) = 2 {sin(n
u=1

ATU2(u,7)) ~ sin(n-

n = 1’ ""63

ATU 1 (u,7))} y=1...,'R
S0, 7) Z{ATUZ (et,) =
ATUL(u 1’}' o R

The recursion sin(ng) = 2-cos(9)'
sin((n — 1)9) — sin((r — 2)6) should be
used in Steps 2.2.1.3.1 through 2.2.1.3.2.

2.2.2 Calculate L, at all target
locations in four viewing
direction: east, north, south,
and west.

2.2.2.1 Calculate intermediate
quantities SA6,(n,s), SA0,(n,s),
SAY,(m,r) and SAY,(mn,7)
32

2.2.2.1.1 546 ,(n,s) = Z a(2m —
m=1
1,n) So2m — 1,s)
32
SA8,(n,s) = Y al@m —
m=1
2,1)-S6(2m — 2,s)
n =20 ..., 31
S = 1, ooy S

2.2.2.1.2 SAY,(m,¥)

Za (n, 2n —

1)-S¥@2n — 1,7)
32
SAY, i, 1) = D a'(n,2n —

n=1
2)-S¥(2n — 2,r)
m=20,..., 31
{ r=1,..., R
2.2.2.2 Calculate background

luminances
31

Lb(r’s)north = Z [SAOe(n,s) +
n=0

SA6,(n,s)|S(2n,r)
31

Lb(rvs)sOuth = Z [SAHQ(}Z,S) -
n=0
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SA8,(n,s)|S¥(2n,r)
Ly(#,8)east = mi) [SAY,(m,7r) +
SAY,(m,r)]Se(2m,s)
Ly(7,5)west = il: [SAY, (m,7) ~

m=0

SAY,(m,r)|So(2m,s)

The addition and subtraction of the
odd and even components in these
equations has the same effect as
the (—=1)" and (—1)™ factors in
Equations (24) in the text.

2.2.3 Calculate task luminances, L,, at
all target locations in four
viewing directions.

2.2.3.1 Same as Step 2.2.2.1 with
c(m,n) and ¢’ (m,n) used in
place of a(m,n) and a’(mn,n).

2.2.3.3 Exactly as Step 2.2.2.2.

2.2.4 Add values of L,(»,s) and L,(r,s) to
those previously calculated
(if any). This step results if there
is more thai. one sublayout for a
type of luminaire, or if there is
more than one type of luminaire.

APPENDIX B

The following is an algorithm for conversion of
an octant symmetric luminous intensity distribu-
tion from spherical coordinates to perpendicular
plane angular coordinates.

1. Establish interpolating function 9(¢,¢),
in spherical coordinates of the
discrete values of I(®,£). Data
assumed to be in five planes

m

(0 = glil =0 ...,

(E = —ﬁll u = O ., 18).

1.1 Calculate coefficients b(j,k)of function
9(d,&) using Steps 1.1.1 through 1.1.4.

4), 19 values in each

1.1.1 Calculate intermediate quantities
M(j,k)
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sin(gﬂj)
—_ 4 X
R
27
[2(37 _p) Sin (37k)] -0, ...8
* k

372 387

Il
k=

w

o

1.1.2 Calculate intermediate quantities

A(Gn,n)
Zl(s )36 )

9 u=0...18
cos(gmf) e

then A(m,n)

cos (27r ) m=20,...,4
37" n=20,...18
The tick marks indicate halving of
the first summend.

1.1.3 Calculate coefficients
b(j, k) = M(j,k)-A(j,k)
ji=20...,4
P =20,...,18
(]7k)'A(9 - ]7k)
i=5,...,8
bk = s ey
j=0...,4
=19, ..., 36
j=5...,8
k=19, ...,36

b(j,]?) =M

()]

o

1.1.4 Modify coefficients
b(0,k) «— b(O,k)/Z _
b(j,0) < b(j,0 >/2 o
b(0,0)<—b(O O)/4

36

2. Interpolate values of luminous intens-
ity at equal increments of the variables
in the perpendicular plane angular
coordinate system, using Steps 2.1
through 2.2.

2.1 Express values of spherical
coordinates (¢,¢) in terms of equal

146

increments of perpendicular plane
angular coordinates, (6,,, ¥,). The ¢ =
0 plane is assumed coincident with
plane in which 6 is measured.

-1
2.1.1 ¢(m,n) = tan [cot <32 >/
m =1, ..., 31
cot (——m)] n ) )
32 m=1,..., 31
2.1.2 £(n,n) = tan! |:{cot2 (P’—Wm) +

2
172 =1 31
2 n y ey
cot (32 )} ] m=1, ... 31
2.2 Interpolate values of candlepower,

1(6,,9;), using
36

I(Qm,wn = Z

i=0 k=0

16, 72 )
cos (3’]@(”2,12)) cos (37 kE(m,n)

2.2.1 Calculate intermediate quantities
(j,m,n)
36

72
. _ b(i et
I(j,m,n) % (j,k) cos (37 g(m,n))

j=0...,8
m=1,... 31
n=1...31

2.2.2 Calculate values of luminous
intensity 1(0,,,¥,)

8
~ 16
1(6,,,¥,) = Zl(j,m,n) cos (§j¢(n2,n))
=0
m=1,..., 31
n = 1, ce ey 31

(0,0, = 0;m = 0,320rn = 0, 32

DISCUSSION

T. L. BALLMAN:* The inductive mathematical reasoning evi-
denced has made a breakthrough into the computation of light-
ing quantities. There have been papers in the past dealing with
the inaccuracies of various intensity interpolation procedures
which have been fairly well solved with the application of the
finite Fourier series and its polynomial modifiers. The algo-
rithm in the Appendicies works successfully; however, the sheer
size of the core requirements causes a problem in itself.
The author has stated that the reduced run-time obtained by .

integration of the surface of radiation using the series and trig-
nometric recursion in evaluating the series and its coefficients,

* Daybrite Lighting Co., 8100 W. Florissant, St. Louis, Mo.
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has made computation of ESI practical for general use. The
run-time has been drastically reduced, but the very nature of
the hardware being used to perform the computation can seri-
ously effect the run-time, for example, to complete the integra-
tion portion of the program, the equipment run-time required
three times the total run-time of the complete program on the
author’s computer.

Because of core limitations (34K), it was necessary to struc-
ture the program as follows: (I) integrate the surface of radia-
tion and compute the A, 4, C, C’, and E, E’ coefficients; (2)
compute the direct component; (3) compute the reflected com-
ponent; and (4) compute the ESI at each point and print out
the results. This is perhaps oversimplifying the process. In each
of the first three steps, the results were written into files and
then accessed by the succeeding step. As a result, the program
is limited by I/O time.

Appendices A and B are valuable, but must be followed im-
plicitly to make the whole thing work. Part II, unhappily, does
not provide the assistance of the appendices. After fighting
through the procedures, it is not that difficult to program using
the mathematical relationships established. The author omits
the expression for the determination of the radiative exchange
factors. Would he provide the expression for both parallel and
perpendicular surfaces? )

It seems valid to relate each surface element to the whole
surface which it sees, but would it also be valid, in the case of
floor ceiling interchange, to treat the floor elements as seeing to
total ceiling area less the total luminaire area? This would
eliminate the need for dealing with a quantity of interchanges
(number of elements times number of luminaires) and help
keep the run-time within bounds.

The author has developed a powerful tool. From the data ob-
tained, some simplified application techniques might be devel-
oped that will allow a more effective utilization of available en-
ergy. Once the relationship is established between total point
illumination and visibility, contrast (or what other names
might be given to visual performance potential) then the differ-
ences may be more easily demonstrable.

J. M. CRAMER:* The mathematical elegance of the author’s
method, and the use of techniques particularly well suited to
the digital computer do much to recommend the method.
There is a loss of generality, however, which weighs against the
method in certain types of application.

The only exception of note to be taken with the method of
the algorithms is the lack of a trap to handle the necessary
mathematical forcing of the intensity to zero at the indetermi-
nate points of the coordinate system.

With regard to increase in computation speed, the limiting
factor seems to be in the calculation of the initial incident illu-
mination on the sections of the room surfaces. The author’s
comments on the increase in speed obtained here would be ap-
preciated.

A severe loss of generality is observed in dealing with mark-
edly asymmetric luminaires and unusual dispositions. If a lumi-
naire of marked asymmetry is used in many orientations within
a room, the numbers of sets of a(m,n), ¢(m,n), . . ., which must
be generated and handled becomes large. In the event of un-
usual dispositions (such as alignment of the luminaires parallel
to an inclined ceiling), certain of the algorithms assumptions
fail. The equations must then be rederived. For totally irregular
dispositions about the plane, no difficulty is seen except for the
nuisance of establishing a large number of 1x1 grids. It is as-
sumed that such grids are not forbidden.

Even in those situations where the algorithms are not suit-
able for final calculations, the intermediate quantities a(m,n),
c(m,n), ..., are of value. Assessed for selected orientations of
asymmetric luminaires and normally for symmetric luminaires,
the coefficients represent the potential of the luminaire to pro-
duce task illuminance, ESI, etc, when applied in a system.
Thus, in the most general case, the intermediate quantities may
prove to be of greater value than the specific algorithms of solu-
tion.

* Wide-Lite Corp., Houston, Tex.
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P. NGAL:#* In Part I, trigonometrical polynomial interpolation
ensures an exact fit on the finite numbers of data points and its
derivatives. Hence, it is a well behaved interpolating function.
The computation time is greatly reduced by the integrability of
the working function and the separation of variables—thanks
to the author’s Perpendicular Plane Angular Coordinate.

The author is forced to make the assumption that

IA(8,0) = 1(8,9)-dA/A

In most cases it is not so. Perhaps the author would comment
on this.

In theory, the process of calculation of direct component can
be eliminated by the following technique. Assuming that the
intensity distribution of the luminaire is the resultant contribu-
tion of M lambertian emitters of different orientations, let p;
be the unit directional vector normal to the surface of the emit-
ter and §; be the unit directional vector of the intensity at the
g; direction. Further, assume the area of these emitters are
constant, A

Ilq;) = LiA~q;*by +
LZ.A'éJ*pAz D
+ LM'A.éj*ﬁM

M
= A Z;Li"}j*ﬁi
1:

Or, in matrix form,

Hgy) @B+ @By 4 + Gy Ly
Hgy) AT Ty R U + 42Dy L,
1
2 =
Hqy) Guthy ¢ @By v an'by Ly
Ly..... L can be solved easily (by Gauss-Sidel). Then, the

whole calculation can be treated as many lambertian flux trans-
fer—inter-reflectance problems (Part II of the author’s paper).
Of course, more research must be done before this can be put
into practice, for example, the question of the existence of the
solution and the uniqueness of the solution. The interest is in
the minimum number of L;’s required for a given set of NI's. As
an example, in the case of the luminaire distribution lamber-
tian, only one emmitter is needed. As a first approximation, the
time required for the computation will be linearly proportional
to the number of L;’s required.

In Part II, The discussor is very interested in the optimizer.
It seems that the author is using some form of analytical tech-
nique. The discussor, himself, abandoned this approach after
some fruitless search. While analytical technique can ensure
that one solution is better than some others, the difficulty is
that one never knows how far it is from the optimal solution.
The discussor did find some success in the discrete search tech-
nique; however, the multiple point problem, as the discussor
calls it, is still unsolvable. It is his sincere hope that the author
can shed some light on this important problem.

R. N. HELMS:{ With these two papers, anyone with a back-
ground in computer programming and an understanding of the
basics of mathematics can write an ESI program. The program
may appear long and involved because of the larger number of
variables necessary in assessing illumination at a point. The

* Holophane Company, Division of Johns-Manville, Newark,
0.

¥ Dot product operation.

t Associate Professor of Illuminating Engineering, University of
Colorado, Boulder, Colo.
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complexity of the mathematics also allows for the most effi-
cient utilization of computer time to minimize computer costs.
Mr. DiLaura has indeed kept his word by developing a comput-
erized technique of calculating ESI which can analyze 100
points in a room for less than $10 of computer cost. The pro-
gram gives not only the ESI values on the work surface but the
luminance patterns on the surfaces. With the addition of the
VCP program presented at the 1968 Boston Computer Sympo-
sium, the engineer can get a complete picture of the effects of
the luminous environment in terms of ESI, VCP, and lumi-
nance ratios. This is the kind of complete service the engineer
needs to provide his client. However, there are points that need
clarification.

In Part I: (1) Does the position point p indicate the lumi-
naire position or task location in Fig. 2? (2) Is #}) measured rel-
ative to nadir at the differential element dA, that is, are ()
and (8y) complementary angles? (3) In Fig. 5, the x, y coordi-
nate of the luminaires are relative to the corners of the lumi-
naires. When treating the luminaire as a whole shouldn’t the
coordinate points be at the center of each luminaire?

In Part II: (1) what effect does the presence of the luminaire
have on the ceiling discretization? (2) In dealing with an indi-
rect unit is the blocking effect of the luminaires (relative to the
task location) taken into account?

The IES should move forward in the measurement of addi-
tional bi-directional reflectance factors. It is essential that com-
putational techniques and physical measurements be cross-
checked or validated for indirect lighting systems. These
checks have not been made to date. These validation experi-
ments will allow one to evaluate the magnitude of variations
that may be caused by the presence of the luminaires between
the ceiling and the task locations. These measurements and
computations may give additional insight into the unresolved
problems of obstacles in the work-plane area such as furniture.
The University of Colorado will be working on this validation
procedure, utilizing the computer program (Lumen II) donated
by Smith, Hinchman, and Grylls for educational use. It is
hoped that validation of indirect systems, as well as practical
ESI measurement techniques, can be developed for presenta-
tion next year.

I. LEWIN:* Rapid strides in the subject of ESI have been made

in recent years. With the publication of “RQQ Report No. 5,” a

method of calculating ESI from luminous intensity data was es-

tablished. This latest contribution by the author is one of the
"most significant advances made since that time.

I am concerned about the emphasis placed upon the four
viewing directions, termed by the author North, South, East
and West. As we learn more about the application and design of
lighting systems for ESI improvement, I am convinced we will
see a greater emphasis on other viewing directions. An observer
does not view along or across the rows of luminaires only, but
does so at various orientations depending on how he is seated
and the nature of his task. We recently have extended the ERL
program to compute ESI for any viewer orientation, and some
significant facts are emerging regarding luminaire design,
which we hope to present in a future paper. It would be better
if we could all express viewing direction in terms of, for in-
stance, the orientation angle of the plane of the viewer’s line of
sight from the forward Y- direction. In this way, we might avoid
having to become experts in nautical terminology to express
viewer orientations other than the four covered in the paper.
This will also eliminate possible confusion between arbitrarily
defined North for the computation and true North shown on
building plans.

Illumination design is moving in the direction of non-uni-
form lighting. The present methods of ESI computation do not
suffer from increased computational time under this type of
situation. However, the author’s method requires splitting the
non-uniform lighting into luminaire sub-arrays, each sub-array
requiring its own solution. Could the author tell us what
amount of increased computer time is needed in such situa-
tions?

* Director, Environmental Research’ Laboratories, Scottsdale,
Ariz.
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The computation method forces the assumption that the lu-
minous intensity emitted by a luminaire at a 90-degree vertical
angle is zero. In the case of luminaires with luminous sidewalls,
this is not the case. Could the author comment as to whether
significant errors could arise in the case of ESI values calculat-
ed for this type of luminaire?

On the equation relating RCS to luminance, is it the author’s
experience that its use achieves increased computational speed
over table look-up and interpolation, or is its chief advantage in
the reduction of computer core requirements made possible by
the elimination of the block data tables?

I have one main concern over the use of this fine computa-
tional work by the author. Most lighting designers are still ov-
erwhelmed by ESI and the plethora of data and tables that the
subject now involves. Having seen some of the print-outs from
the new program, I question whether tables of 200, 300 or 400
ESI computations for a given room can be readily analysed, or
whether they are really necessary. There is the danger that the
designer may be confused by the amount of data that he is
asked to assimilate, and the efforts by the author and others
could suffer as a result. There are various approaches to this
problem, and the RQQ committee is considering the ESI Rat-
ing system, which condenses ESI data into a meaningful form.

In cases where the designer is satisfied by the calculation of,
for instance, 10 ESI points, it would seem that the efficiency of
the new system is reduced, as the solution of the various equa-
tions, which presumably involves much of the cost, still is re-
quired. If this is so, would there not be a substantial increase in
the cost per ESI point calculated in such cases, versus that for
rooms where several hundred points are computed?

Further, we must be careful to realize that the cost of ESI
computations does not consist solely of computer time. In fact,
most of the cost involved in obtaining such computations may
well consist of the amortization of the programming dollars,
plus operator time. A program which runs twice as fast as an-
other can in no way half the cost.

Lastly, Mr. DiLaura mentioned the necessity for interpola-
tion of luminous intensity data from photometric curves. The
RQQ committee is of the belief that the normal type of photo-
metric data available, which is presented in 10-degree vertical
stips, will give reduced accuracy in such interpolations. We feel
that 5-degree photometry is important, and that 2%-degree
photometry is highly desirable. Would Mr. DiLaura please
comment as to whether he feels 10-degree photometry is ade-
quate for ESI computations, or whether he would prefer to see
improved photometry based on 5- or 2%-degree steps.

AUTHOR: Mr. Ballman correctly states that the actual run-
times will be a function of the particular computer hardware
being used. Although this is true, processing time on slower ma-
chines is almost always less costly than that on faster machines;
the overall cost remains roughly constant. This is especially
true of procedures which are processing-time limited, rather
than input/output time limited. If core limitation proves to be
a problem, as Mr. Ballman indicates, reduced problem size, or
program modularity would offer a solution to this difficulty.
The expressions for the radiative exchange factors requested by
Mr. Ballman can be found in one of the many texts on radiative
heat transfer.

Regarding to Mr. Cramer’s question concerning the calcula-
tion time for the initial illuminances on the room surfaces, the
author has found this calculation time small when compared to
other sections of the procedure, especially the determination of
the reflected components of L, and L;. Mr. Cramer correctly
indicates that for luminaires with totally asymmetric intensity
distributions in several orientations, the number of sets of coef-
ficients can become large. However, a technique is available to
reduce the number of coefficients necessary in each set. It is al-
most always the case that the value (and hence the numerical
importance) of the coefficients deminishes rapidly as the har-
monic number is increased. Beyond a certain harmonic, there is
little accuracy to be gained by adding more coefficients to an
evaluation. Finding this cut-off point is an easy matter. A mod-
ified Parseval Relation gives the total mean squared error
(MSE) for the entire data range, as a function of the number of
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coefficients being used. The required equation for the coeffi-
cients discussed in Part I is:
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A tick mark preceding a summation indicates doubling the first
term, and a tick mark after a summation indicates halving the
first term. M and N are proposed limits on the number of coef-
ficients to be used. Beginning with the lowest order, M and N
are increased until the MSE is below an acceptable level. Five
per cent of the square of the average value of the data has
shown to be a reasonable criterion. The number of coefficients
is typically one quarter of the total number available. The con-
sequent savings in space and execution time is not small.

Mr. Cramer mentions the difficulties in applying this proce-
dure to non-rectangular rooms. Calculating in a non-parallele-
piped room wiil demand a different coordinate system and geo-
metric assumptions. The author feels that a similar procedure
could be developed for this condition.

Mr. Ngai correctly pinpoints a fundamental assumption,
namely that the surface of the luminaire is of constant lumi-
nance and distributive characteristics. Although not accurate
(or even roughly descriptive) for some luminaires, it is neces-
sary to assume this if one is to conveniently integrate over the
luminous surface of the luminaire. A more accurate statement
would require photometric information far beyond that which
is commonly available. Mr. Ngai offers an interesting alternate
procedure for the direct component calculation. Although his
result replaces the actual luminaire with a collection of lamber-
tian emitters, their effect on task and background luminance
must still be calculated explicitly. Since their emittances will be
high and localized, treating them in a manner as outlined in
Part II of the paper will not provide sufficient resolution. Evi-
dently, a scheme such as that in Part I is still necessary.

The answers to the questions raised by Dr. Helms are as fol-
lows. Point P of Fig. 2 indicates the location of an arbitrary
point with respect to two origins of two perpendicular-plane
angular coordinate system. A specific application of the idea is
shown in Fig. 3. The angles used to give the direction of intensi-
ty from a differential emitter dA are not measured from its
normal but are measured exactly as those which indicate the
incident direction to the target. Thus, they are not complemen-
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tary angles. The coordinates indicated in Fig. 5 determine the
limits of the integrals over the luminaires. As such, they must
indicate the edges of the luminaires rather then their centers.
For the purpose of calculating the radiative transfer in the
room, the presence of luminaires is ignored. The celling is
discretized as any of the other room surfaces. The luminaires’
reflective properties can be taken into account by specifying
their reflectances as different from the ceiling. Where appropri-
ate, a discretized element’s reflectance will assume the value
assigned to a luminaire. The obfuscating effect of suspended
luminaire presents formidable geometric difficulties. No effi-
cient manner has been devised to account for this.

Dr. Lewin points out the problems with the assumption that
the luminaire is to have zero candelas emitted at 90 degrees
from its normal. It should be emphasized that this does not ef-
fect the calculation of Ly and L; since the BRDF’s are zero at
90 degrees from the target normal. This assumption will affect
the calculation of the initial illuminances only at room surface
elements located 90 degrees from the luminaire’s normal. This
will obviously affect the resulting final luminances at these ele-
ments, but the overall effect on the values of L, and L, is likely
to be small. For recessed luminaires, this assumption poses no
problem. ]

Dr. Lewin is doubtful of the applicability of the author’s pro-
cedure when the number of ESI calculations needed is small.
The author is not convinced that a small number of points is
ever sufficient for designing purposes. A contour plot of iso-ESI
lines is an excellent way to assess a lighting system’s perfor-
mance. The generation of such contours demands a large num-
ber of points. Even if the ESI is needed at only a few location, it
seems unwise to consider only single points, since local ESI gra-
dients with respect to observer position may be very high. Gra-
dients of ESI are as important as the values of ESI themselves.
Reliable calculation of gradients requires numerous and dense
points of computation.

Dr. Lewin questions the economics involved in programming
and calculating ESI. Having produced two very different pro-
grams for the calculation of ESI, the author feels that the pro-
gramming dollars necessary to produce an ESI program are es-
sentially independent of the particular computational tech-
nique being programmed. However, the cost per run for the dif-
ferent techniques can easily be an order of magnitude different.
Frequent use of an expensive program can easily generate more
cost than the production of the program. Or worse, an expen-
sive program may prompt infrequent use. It is estimated that
600 man-hours are needed to take the contents of this paper
and produce a very complete ESI program. The amortization
cost, even over a few years, of such an investment can easily be
overshadowed by the execution costs of a slow program.

With regard to photometrics, it is the author’s opinion that
10-degree increments in photometric measurements is usually
insufficient. It is important to accurately assess the shape of
the luminaire’s intensity distribution. Photometric measure-
ments in five planes and 5-degree increments is essential to
make such an assessment. For luminaires with highly con-
trolled distributions, 2%-degree steps are necessary. This is
especially important when gradients of ESI and luminaire com-
parisons are being calculated.
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