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Nondiffuse Radiative Transfer 2:
Planar Area Sources and Receivers

D.L. DiLaura

Introduction

The most common form of nondiffuse radiative trans-
fer calculation in lighting is determining the initial flux
from luminaires onto discrete elements of architectural
surface. The fundamental expression for the flux trans-
ferred from emitter to receiver is a double area integral
over the areas of emitter and receiver. In general, such
integrals do not have an analytic solutlon and various
approximations have been developed

The first paper in this series derived a contour integral
taken around the perimeter of a nondiffuse emitter,
which gives the illuminance at a point from the emitter.
This work extends this to an illuminated area; the result
being a double contour integral, taken around the
perimeters of emitter and receiver, which gives the total
flux transferred directly from emitter to receiver. This is
similar to the double contour integral first obtained for
diffuse emitters by Fock.” The double contour integral
expression for area receivers and diffuse area emitters is
well known, though only recently has an analytic expres-
sion been obtained for polygonal emitters and receivers.

The present results are useful in the design and analy-
sis of luminaires where the reflectance properties of
materials are not diffuse and the discrete elements that
constitute reﬂecung surfaces must be treated as non-dif-
fuse emitters. Additionally, the present results can be
used to calculate nondiffuse form factors for use in non-
diffuse radiative transfer analysis.

Strategy

The strategy used in this development is as follows.
The light vector produced at a point by a nondiffuse
plane area emitter is determined. Using a form of
Stokes’s theorem, the resulting area integral is trans-
formed to a contour integral around the emitter’s
perimeter. This total light vector is then used to deter-
mine the flux transferred to a differential area of a
receiver. Area integration over the receiving surface gives
the total flux. This second area integral is transformed to
a contour integral, leaving a double contour integral
around the perimeters of the emitter and receiver. The
spherical coordinate system is used throughout having
variables (r, 8, @) and unit vectors (F , 6, @). It is conve-
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nient for light field manipulations and for expressing
nondiffuse luminance distributions.

Tensors, dyads, and the light field

The vector light field is a powerful and simplifying for.
malism for computations and developments like those
attempted here.” Consequently, vectors, tensors, and a
little field theory are used in the present work. The ten-
sors used in this development are of second order, and
thus are simple extensions of the idea of the product of
two vectors. Therefore, although modern tensor sub
script and superscript notation is in general use, what is
used here is the older, and somewhat more accessible,
notation of dyads and dyadics.7_9

Vector multiplication can be defined by the dot prod-
uct, & ° b, and the cross product, @ x b. Along with these
two operations, an operationless product exists; vectors
are simply bound together forming a single entity. We
will indicate this as two vectors placed together: ab.
Insistence on a geometric interpretation gives Figure 1.
The single entity ab can be thought of as having poten-
tial or capability in two directions, that of @ and that of b;
the magnitude of these potentials or capabilities being
|al and |b|, respectively. It is in this sense that ab is an
extension of the idea of a vector, which has potential or
capability in one direction.

The entity ab is a tensor of order 2 and is also called
a dyad. It can be thought of as a single operator, capable
of transforming a vector t into a vector U. The left and
right components (sometimes called the antecedent and
consequent) of a dyad are not necessarily the same, and
in this case the order of the antecedent and consequent
vectors is important. That is, it is usually the case that ab
# ba. Given that @ and b are defined in Cartesian coor-
dinates as

a=Xay +yay+2a,
b =Xb, +yby +2b,
ab can be interpreted as (Xa, + Ya, + 2,)(Xb, +yb, +
2,)and is seen to have nine components:
Xza,b,
yzayb,
zza,b,

xxayb, Xyayb,
yxa,b, yya,b,

3%a,b, 27ab,



The scalar quantities
(e.g., ab,) that weight
the components are said
to be the coefficients of
the dyad. They can, of
course, have the value 0.
It can be seen that the
z simplest dyads in a given
coordinate system are
formed from pairs of its
y unit coordinate vectors.

Operations on tensors
x may raise or lower their
order. If a dyad ab is dot-
ted on the right with a
vector t, the result is a
vector in the direction of &, having a magnitude equal to
that of @, multiplied by the dot product of the vector t
and b. That is, abet = a(b-t). Dotting the dyad on the left
with a vector t gives, in general, a different result in both
magnitude and direction: t-ab = (t-a)b. In each case, the
result is a vector. That is, the dot product operation on
the dyad, a tensor of order 2, has reduced it to a vector,
a tensor of order 1. Not all operations reduce a dyad to a
vector. For the cross product of a vector and a dyad we
have either abt = a(bxt) or txab = (txa)b. In each case
the result is a dyad.

Dyads can be operated on with vector operators,
including partial differentiation, V. The curl of a dyad
can be obtained by extension of the curl applied to vec-
tors. The result is somewhat more elaborate, the V oper-
ator being applied to both the antecedent and the con-
sequent: Vxab = (Vxa)b—ax(Vb).

The sum of dyads is a dyadic. A dyadic, S, of three
dyads can be written as 3= au + bv + cw. It is always pos-
sible to transform such a dyadic into one having three
dyads, each with a unit orthogonal coordinate vector as
its antecedent. Similarly for consequents. That is, vectors
u’, v’, w’ a’, b’ and ¢' can always be found such that
S=ru’'+6v'+@wW'=a' + b'0+c ‘P Gibbs and Wilson give
a particularly clear introduction to dyads and dyadlcs

el

Figure 1 —Geometric interpretation
of the dyad ab

Dyad formulation of the light vector

We use the vector llght field as deﬁzned and described
by Moon.” Yamauti and Gershun provide a more
abstract development. The excellent monograph by
Gershun is particularly recommended.

A differential source creates a vector light field. At any
point p in that field, the light vector, dEp, has a direction
equal to that of the radial line from the emitter to point
p. The magnitude of this vector is equal to the luminous
intensity, 1(8p,¢p), exhibited by the differential source in
the direction of p, divided by the square of the distance
from source to point p. That is, dEp = I(Gp,(pp) #/r2. The
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magnitude is the spatial flux density at point p, and the
direction is radial from the emitter. Multiple emitters cre-
ate a vector light field that is the vector sum of the indi-
vidual fields. That is, a light vector, E, can result from the
vector sum of many light vectors; including the integra-
tion of differential light vectors.

We begin with the fundamental equation for the dif-
ferential light vector, dE, generated at some point p by
the luminance of a differential element, Ay of a nondif-
fuse emitter, A4, assuming radiative transfer in non
absorbing and non-scattering media:

L(6,9)cos(8) dA, .

r
" (1)

dE=-

where dE = differential light vector produced by dA4
L(6,¢) = scalar field equal to the luminance of the
emitter in direction p, i.e., (0,9)
dA, = differential area element of emitter, A,
I = distance between element dA; and point p
# = unit radial vector of the spherical coordinate
system, origin at dA
0 = angle between surface normal at dA and r
The minus sign reverses the direction of f so that dE
is a vector from point p to dA;.
If dA; is the differential axial vector having magnitude
dA, and direction of the outward surface normal, then
PedA=—cos(8)dA, and

e LO9)T o dAq @)
r2
dezh(e';'i o dA, (3)
r

The quantity ff is a dyad, with antecedent and consequent
equal to the unit radial vector . The product of #f and the
scalar field L(8,¢)/r2 produces a dyad field, which we
define as L, having directional components ffand magni-
tude given by the scalar field L(6,¢)/r2. That is,

L(r.0,¢) = FFL(6,¢) I (4)

The dyadic field has a magnitude varying with (r,0,9)
and, when necessary to avoid ambiguity, will be indicated as
L(r,0,p); otherwise L suffices. It has units of can-
dela/area/area. Lis the dyadic field produced by the lumi-
nance of an emitter. The dot product of it and the axial vec-
tor of the emitter surface gives the resulting vector light
field. That is, substituting Equation 4 into Equation 3 gives

dE=L o dA, (5)

Since the dyad L is symmetric, the dot product with
dA, can be on either side of L. The total light vector
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produced at point p is obtained by integrating this dot
product over the emitter:

E= ILodA1 (6)
Aq

Transformation to a contour integral

The area integral of Equation 6 can be converted to
a contour integral by the application of Stokes’s theo-
rem. We use a dyadic generalization of its more common
vector form:

I(VXS)odA = Cj‘ Jody o
A r

where dA = dA i = differential axial vector with magni-
tude equal to the differential element of area and direc-
tion equal to the outward directed normal of the sur-
face

V= partial differential operator, with V x giving the curl

I' = directed perimeter of surface A. Direction is that
of the right-hand rule applied to the surface normal

dy = differential vector with magnitude equal to dif-
ferential element of the perimeter, I', and direction
equal to the local tangent, and

3 = arbitrary dyadic field

There is a difficulty in applying this to Equation 6; the
dyadic field of Equation 7 must be fixed and single val-
ued throughout the region of interest. This is not to say
constant; but, given an arbitrary point on surface A, the
value of 3 at that point cannot depend on the orienta-
tion of A at that point. Concomitantly, the value of Vx3
cannot depend on the orientation of A. In the present
application, the surface generates the field, and thus, for
a nondiffuse emitter, the field depends on the orienta-
tion of A at that point. Concomitantly, the value of can-
not depend on the orientation of A. In the present
application, the surface generates the field, and thus,
for a nondiffuse emitter, the field depends on the ori-
entation of the surface not just on its perimeter. To
make the field fixed, single valued and dependent only
on the perimeter of the emitting surface, it is necessary
to fix the shape of the emitting surface. Though any
shape is permitted, it is practical to assume the emitting
surface is planar, making it simple to specify the field. If
the emitting surface is planar than the coordinate sys-
tem can have its origin at point p or at dA. In either
case, the zenith direction (8=0) is normal to the planar
emitter.

The development is also simplified if we assume that
the emitter is homogeneous, that is, L(0,9) is the lumi-
nance distribution everywhere on the planar surface of
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the emitter. We note that in the diffuse case, the field
produced by the emitter is not a function of the emitter’s
shape, and fixing it is not necessary.

To transform Equation 6 to a contour integral using
Equation 7, it is necessary to find a dyadic, 3, such that
its curl yields the dyadic, L, defined by Equation 4. Thus,
the required dyadic is defined by

Vx3= L =ffL(8,¢) /" (8)

If 3 can be found, then Equation 6 becomes

E= jLodA,: J.(VXS)odA1 =(j.50d'yl ©

A1 A1 I‘1

where Vx3 = L = ifL(0,9)/r2 .

To solve for 3, we assume it has a form given by S = af
+ b6 +@. That is, the dyadic is the sum of three dyads,
each consisting of one of the unit vectors of the spheri
cal coordinate system as the consequent, and a vector to
be determined as the antecedent. The curl of 3, in
spherical coordinates, is

P rsin(6)¢
10
Vuze|2 2 2| 1 10
o 0 dp |r2 sin(e)
arb rsin(e)c

Note that the partial derivatives are of the vectors @, b,
and €, and that the result of taking the curl of the dyadic
is another dyadic. Expanding Equation 10 and substitut
ing into Equation 8 gives

} (11)

rrL( )_
o111 0, 9. +<i>1 Orp-La
ro|sin(e)dp  or rlor o0

T2 rsm(e){ sin(0)e -

This must be solved for vectors a, b, and ¢ which
make any Hor ¢ component of the dyadic on the right--
hand side vanish. There must remain a single compo- |
nent equal FfL(0,¢)/r2. Solutions are not obvious. ;

A general solution to Equation 11 for the nondiffuse
case can be obtained as follows. We recognize that only
the first term on the right side can remain since the sec-
ond and third can never yield dyads with as f antecedent,
as the left side demands. The second and third terms on
the right hand side vanish if vectors @ and b are null, and
vector € has as one of its factors, 1/r. Assuming this,
Equation 11 becomes




L) . 1
2 J r sin(0) 20 sm(e)c

(12)

Assuming vectors @ and b are null means the dyadic
we seek will be incomplete. It remains to be seen whether

the general solution will allow this; though we note that Solving gives

the dyad on the left is also incomplete. Taking the dot
product with F of both sides of Equation 12 we obtain

P fiLe,e) _ P
r? rsi n(e) sin(0)

(13)

L(e ) sm(e) ) 2 infe)c

r

We first determine a form of ¢ which yields the correct

direction: f. Unlike Cartesian coordinates, the unit vec-

tors of spherical coordinates can have nonzero deriva-

tives. We note that the partial derivative in Equation 13 is
with respect to 0, and observe that

(14)

This suggests that if € has both 6 and # components
then, when differentiated and subtracted, only an f com-
ponent will remain. Assume that the 6 and f components
have magnitudes derived from the same scalar field.
Application of the operationi sin (0) results in a vector

: - . 00
with only an F component if

i~ (8.0)-82 (0.9)
rsin(6)

(15)

Cc=

where £(0,9) is a scalar field to be determined.
Substituting this definition for € gives

il . (6.9)- oc (6.0)

Sm(e) 2 r sin(6)

(G 5 o) (52 00)-

(59) -5 e 00) 17

)
Substituting this result fora—e' sin(0)c in Equation 13
gives

A {L (e,q>)+a‘%22 L (6,@))

r

o .
P sm(e) c=

; L(6, ¢)sin(e)
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Evidently the scalar field, £(8,9), must be such that
82 .
(L’. 6.9) +56.5L (G,Lp)J =L(6,¢)sin(s).
o
£(68,p) = I L(6",@)sin(6 — 6")sin(6")d6’ (16)
0

Equations 15 and 16 define the vector €, which is the
¢—component of the dyad, 3, which, in turn, satisfies
Equation 8. Substituting into Equation 9 allows the total
light vector produced at point p by a planar nondiffuse
emitter with luminance distribution L(6,p), to be
expressed as a contour integral:

“

Iy

2

Ty

o £ (0.9)-8¢ 2 (0.0)
rsin(e) > dn

i~ £ (0.0)-6c (0.9)
r sin(6) @ ody,

17)
0
where  p(9,9) = I L(6’. ¢)sin{6 —6')sin(6") do’

0
0

0 .
2 clo0) = J' L(6",¢)cos(6 - 6')sin(8")de’
0

I';= directed perimeter of emitting surface,

dy, = differential vector element of T’y

r = distance from dy;, to point p

(6,9) = spherical coordinates with origin at p and
zenith direction (8=0) normal to the planar surface of
the emitter

Examination of Equation 17 shows that the total light
vector, E, has components in the f and 6 directions. A
diffuse emitter is the speaal case where L(6,p) = L. The
integrals for £(0,9) and £ £(0,¢) have simple analytic
expressions. Substituting “¥ them into Equation 17 we ob-
tain

L { fo-6(1-ecot(d)) .
E—EC_‘. . Pody,
18

(18)
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This formulation appears to be new and can be com:
12

pared with the result obtained by Yamauti and others:

E:E(jm
2 r

Iy

Dyad formulation of total flux transfer

We now assume that the point p is on the surface of
an area receiver. The light vector at this point is given by
Equation 17. The flux incident on a differential element
of area, dAy, is

dd = n° E dA,,

where Ris the unit vector, normal to dA,.

Now AeE is, of course, the illuminance at point p,
and its product with dA, gives the flux onto dA,. We
use the axial vector, dAy, and integration over the
receiving area, Ap, to obtain the total flux onto the
receiver:

D= J‘dAzoE

Az

Substituting for E from Equation 17 gives,

jdAzo (j-rw——ﬁ (6.0)-6¢ (9<|>)0d71

rsin(e)
(19)
A a o
p rq>?£ﬁ (B,(p)—etpL (B,q)) 4
@ =4 I Az e rsin(e) *tn

I |As

Once again, we transform the area integral to a con-
tour integral by finding the appropriate dyadic and
invoking Stokes’s theorem. We note that the field pro-
duced by the emitter in the region containing the receiv-
er is fixed and no assumptions about the area of the
receiver are necessary.

We seek a dyadic, X, which satisfies the equation

c (6.9)- o6p L ©.9)
rsin(6)

o2
V=%

Let R= ui+vO+wd. Expanding VxX and substituting
gives
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et Yl At M

rg—=r (G,q))—é(i)l: (G,(p)_

r sin(0)

e O )

11 8 @ RICRE. } |
+6— - —U——TW,+@—{—IV——-Uu;.
r|sin@)de  or rlom o0

We recognize that the third term on the right side
must vanish since it can never result in a dyad with
antecedents of f or 9 which the left side demands. The ;
third term vanishes if vectors v and U are null, leaving

i £ (0.9)-64c (6.0)
rsin(6) -

=r‘?:](e){asm(6) } érl {grw}

Considering the terms on the right hand side and not- ;
ing that 9 J ¢=0 and < J ¢ -2 ¢ =0 reveals that w=0L 6.0)
or 00 sin (0)
is a solution, giving the remarkably simple expression
for N:R= POLO.0).
sin (0)

9
®

Substituting in Equation 19 and invoking the dyadic
form of Stoke’s theorem gives for the total flux transfer
between the nondiffuse planar emitter, A4, and the
receiving surface Ay :

_ 44‘% o 4 o ty,z (0.9) (20)
where
(21)
L(O,p) = s 9) @)sin(® - 6')sin(6')d6’

Note that the factor of 1/sin(8) has been subsumed
into the definition of £(6,p). Equations 20 and 21 give a
complete solution to the general radiative transfer
between surfaces. We note that the spherical coordinate
system used in Equation 20 has its zenith direction (0=0)
normal to the planar emitter surface and its origin at dy;.

Once again, diffuse emission is a special case and the
scalar function £(6,¢) has an analytic form; we obtain



(22)

cb:%(j‘cjd“ o ¢ o dy(1-0cot(0)).

™ r
This can be compared to the result obtained by Fock:"

q>=%(j‘<j‘d72 ody In(r)

|0

(23)

We observe that Fock’s result can be written as

(I):%(J(j.dyz o(ff+ §é+cixi>)ody, In(r),

1Ty

since (FF+00+@ @) dy,=(FF+0 O+@p)° (Fdy+Odyy+
¢dy= dy;.The special dyadic, FF+00+@@, is referred
to as the idemfactor, and functions as 1 does in ordi-
nary algebra. The dyadic fields of Equations 22 and 23,
PP [I-cot(0)] and (FF+66+PP)In (r), produce the same
double contour integral values.

Application

One obvious application of these results is the calcu-
lation of the flux input from luminaires to discrete sur-
faces. In most applications, a far field candela distribu-
tion for a luminaire is available. From this, the average
luminance distribution can be determined:

L(8,9) = 1(6,9)/ A cos(6)

where A = luminous area of the luminaire

1(8,9) = far-field candela distribution

This luminance distribution function is then substi-
tuted into Equation 21. In all practical cases, a function-
al form for L(6,9) is not available; only an array of values
determined from the array of farfield candela values
resulting from photometric measurement. This means
that a set of discrete values of the scalar field £(0,9) will
be used. In addition, the double contour integrals of
Equation 20 will be approximated by a double summa-
tion over discrete pieces of the emitter’s and receiver’s
contour.

M N
¢= E E AT4j oo ATy L (eijv(Pij)

=1 j=1

(24)

where M = total number of discrete pieces of emitter
contour

N = total number of discrete pieces of receiver con-
tour
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AT'4; = discrete vector formed by ith piece of contour
of emitter with direction given by the right hand rule,
AT'p; = discrete vector formed by jth piece of contour
of receiver with direction given by the right hand rule,
(85:9;) = spherical coordinates of jth piece of receiver
contour, with respect to the ith piece of emitter contour
£(8,p) = scalar function given by

£0.p) = — I(6".¢p)sin(6 - 6")sin(6’) i (25)
sin(8) Acos(6')
0
or approximately
N;j 26

RN (8. ) sin(8; - 6f)sin(e;) =0

o= < ) 20
sin(8)) Acos(®;)

where Nj = Gj/ AO = number of elements in the sum for Gj
If a convenient interpolating function is built from the
values of 1(8,¢) sin(8)/cos(0), then the integration of
Equation 25 can be performed analytically and a better
approximation than that of Equation 26 is obtained. A
convenient example of this is to use a finite Fourier
series to functionalize the discrete data available for
1(6,9)sin(6)/cos(8).” That is,

M N
[(8,¢) sin(®)/cos(8) = Z Z apmp, cos(me)cos(ne)

m=1 n=0

where M and N depend on the number of discrete val-
ues of 1(6,9), and the coefficients amn are calculated
from values of 1(8,¢) sin(8)/cos(8). We have a simple
continuous function allowing analytic integration to
obtain the function £(6,9).

Equation 25 becomes

8™
£(6,9) = #n(e) J- Ziamn cos(me’)cos(ne)

0 m=1 n=0
* sin(6 - 6’) do’

Term-by-term integration is allowed, and we obtain

o M N
4O = gy D 2

m=1 n=0

,[Si{(m—;?eg smg(mT-‘)eJJ
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Convergence is rapid and significantly fewer than M and
N terms are sufficient. Equation 27 is an accurate way to
build a table of values of £(6,p) for use in Equation 24. Of
course, this computation need be done only once. This
procedure can be applied to any luminance distribution.

Computational economy

The computational utility of Equation 24 is demon-
strated by application to two axially symmetric luminance
distributions:

L1(6,9) = L, cos¥(8)
Lx(6,9) = L, cos%(6)

These correspond to narrow and wide candela distri-
butions, respectively. Use of Ly(6,p) is limited to O less
than ©t/2. L, is set equal to 1.0 and Equation 21 yields

Ly(8,p) = 1-%(3 ~ 2c0s(8)- cos® (e))

£(0,9) = 1+ cot(9) - In(cos(s)))

The geometry used for these calculations consists of
two parallel squares, separated by three distances; the
first equal to three times the size of the squares, the sec-
ond equal to the size of the squares, and the third equal
to one-third the size of the squares. The flux transferred
is calculated two ways: using Equation 24 and the values
of £1(8,¢) and £5(8,9), and the other using a finite sum-
mation approximation to the double area integrals. For
both computational procedures, values for the flux trans-
ferred is calculated as a function of the number of dis-
crete element evaluations used. The evaluations are
approximately the same amount of computational work
for the two procedures consisting of table look-ups for
values of either £4(0,9) or£s(9,9), or 1(6,¢). Figures 2, 3,
and 4 show the results for the Lycos3(0) distribution at
the three separating distances. Figures 5, 6, and 7 show
the results for the L,,cos™2(8) distribution at the three sep-
arating distances. The superior convergence properties
of the contour integration method are apparent.
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Discussion

Whenever I see a paper with “Part 1” in the title, I
always wonder whether there will ever be a “Part 2.” I am
pleased to see that in this case, the author has removed
any doubt. “Nondiffuse Radiative Transfer” was a wel-
come and impressive extension to V.A. Fock’s contour
integration procedure for calculating illulglinance ata
point from an ideal diffuse area source. Nondiffuse
Radiative Transfer 2” completes the work with yet anoth-
er mathematical tour de force.

The problem of calculating the radiative flux trans-
ferred between two arbitrary polygons was first addressed
by Johann Lambert in 1760. It took over 230 years to solve
the problem for ideal diffuse sources. Schroder reports
that it took Mathematica 15 mins to solve 90 percent of the
problem, followed by nine months of intensive mathemat-
ics research to fill in the details of the remaining 10 per-
cent.” It also took 15 pages of Mathematica source code to
express the resultant algorithm.

In comparison, the author has developed an elegant
algorithm for nondiffuse polygons (and which evidently
subsumes Schroder’s work) that can be expressed in a
single equation.

I am not ashamed to admit that I was unable to follow
the mathematical development in it entirety. I have also
not had the time to program the algorithm, although I
certainly hope to do so in the near future. From the
results present in this paper, however, it certainly appears
to be a practical and time-efficient approach.



It is doubtful whether the author’s procedure will find
practical use in day-to-day lighting calculations. On the
other hand, it should prove very useful to the computer
graphics community, where radiative transfer techniques
are used to create photorealistic and photometrically
accurate images. One problem in particular comes to
mind: cove lighting. Accurately modeling this type of
lighting in an architectural rendering typically requires
that the wall and ceiling surfaces be finely discretized
where they meet. The author’s procedure resolves this
issue by allowing coarser discretization of the surfaces,
and consequently faster execution times for the render-
ing program. More to the point, these programs will
eventually replace our pocket-calculator style of lighting
calculations.

The situation in complex environments is more prob-
lematic. As the author noted in his previous paper, the
procedure is only applicable where the illuminated sur-
face does not “cut” (i.e., partially occlude) the emitter. In
a complex environment, of course, this must be general-
ized to include any other intervening surface or object.

To quote my discussion of the author’s previous
paper:

There are practical solutions to this problem. An
efficient “area subdivision” algorithm such as
Warnock’s algorithm can be used to determine the
precise extent to which objedcts in an environment
partially occlude the emitter. Relevant examples of
the successful use of Warnock’s algorithm in com-
plex environments incflude Nishita and Nakamae
and Sillion and Puech.” In other words, the author’s
procedure forms the basis of an eminently practical
technique for calculating illuminance or irradiance
in computer graphics, lighting design, and thermal
engineering applications.

Area subdivision algorithms assume a specific view-
point in the environment, which in this case translates
into a point receiver. It is unclear whether these algo-
rithms can be generalized to model the occlusion of a
finite surface area—an interesting challenge for a gradu-
ate student in computer graphics or illumination engi-
neering perhaps? There may even be relevant ideas to be
derived from this paper.

In presenting his paper last year, the author lamented
that the leadership role in theoretical lighting research
had been assumed by the computer graphics communi-
ty. I am pleased to say that this paper has unquestionably
reclaimed that title for illumination engineering.

1. Ashdown,
Ledalite Architectural Products, Inc.
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The author has once again shown how advanced
mathematics can be applied to a complex lighting situa-
tion to achieve a difficult and elusive result. This paper
offers a very thorough, although highly complex, deriva-
tion of this procedure for the reader to follow. While the
graphs provided in the paper shown the computational
economy in terms of number of discrete elements, it is
unclear where these discrete elements are being applied.
Are they on the receiving or sending surface?

One of the primary concerns in applying this tech-
nique appears to be the fact that the procedure assumes
that the light field is uniform across the receiving sur-
face. In the case of a calculation for orthogonal surfaces,
which are very close to each other, such as in a corner,
the convergence situation is likely to change significant-
ly from what occurs when the two surfaces are parallel.
Has the author attempted to apply this approach to
other than parallel surfaces?

It is interesting to note that the number of discrete
elements which are required to get a close approxima-
tion is large when the elements are farther away and
smaller when the elements are closer. One would expect
this condition to peak at a particular distance, then fall
off again at larger distances. Is this what occurs?

R.G. Mistrick
Department of Architectural Engineering
The Pennsylvania State University
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Author’s response

I. Ashdown correctly identifies the most difficult prob-
lem in the implementation of this new development; the
effect of occluding objects between surfaces exchanging
flux. The references he sights are adequate for solving
this problem from a single viewing point; but the elegant
solution for the full three-dimension problem remains
elusive. The author feels that the light-field approach to
this problem will be very fruitful. This will shift the
emphasis from what is happening at the surfaces of the
radiative transfer system, to what is happening in the
interstices between them.

R. Mistrick asks about the use of the discrete element.
The element counts shown on the abscissac of the
Figures 2-7 are total numbers of discrete element used;
that is, the sum of the number of elements on the receiv-
ing and sending surfaces. Regarding convergence, it is
the author's experience that convergence appears to be
governed by not only the proximity of the receiving sur-
face, but its size and the method of approximating the
function referred to as £ in the paper. Convergence is
not monotonic and the position of the peak of element
count does, as suggested, depend on the separating dis-
tance of the emitting and receiving surfaces.
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