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On Near-Field PhotQmetry

PY. Ngai

Introduction '

The current practice in photometric testing, evalua-
tion and application of luminaires involves the use of
far-field photometry—ie, employing photometric
data collected at a distance that is relatively large com-
pared to the size of the luminaire, thus evaluating the
luminaire as a point source. There are two major limi-
tations in the application of far-field photometry: a) it
is unable to provide data which indicates the actual
photometric pattern of luminances on a luminaire; b)
in situations where the luminaire is relatively close to
the surface it is illuminating, the luminaire is assumed
to be photometrically homogenous, which makes it
impossible to perform accurate lighting calculations.

In this paper, we will introduce and explain the
theory of near-field photometry—i.e., the collection of
photometric data which allow us to consider the
luminaire not as a point source, but as a combination
of individual components, each with unique photo-
metric properties. We will outline the mathematical
procedures for obtaining near-field photometric data,
and demonstrate how the use of near-field photo-
metry will dramatically improve our ability to accur-
ately represent the luminous intensities of a lumi-
naire, as well as luminance and illuminance patterns
on a surface.

The luminance distribution function

Near-field photometry involves the application of a
luminance distribution function, which is illustrated
in Figure 1. This function states that for any luminous
body, the luminance at any location p in the direction
r can be represented by the function L(p,r).

With the knowledge of L(p,r), all other photometric
quantities of the luminous body (or luminaire) itself
and its photometric effects on surfaces and environ-
ments can be determined. These include luminance
distribution of the luminaire, intensity distribution
of the luminaire, illuminances on a surface due to
the luminaire, and luminances on a surface due to
the luminaire.

Luminance distribution of the luminaire
Various aspects of luminaire luminance which can
not be derived from far-field photometric data can be
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evaluated using near-field photometric data with the
function L(p,r).

First, maximum luminaire luminance can be deter-
mined as

Lmax = Max L(p,r) , 1)
for all possible p and r. This can be done analytically
if the function L(p,r) is well-defined, or computation-
ally if it is arbitrary.

Second, near-field photometric data enables us to
consider the luminous distribution of a luminaire
within a specific field of view from a given viewpoint.
As Figure 2 illustrates, when a luminaire is viewed at
a relatively close distance, it is not viewed from a
single viewing angle but within a field of view which
is comprised of many viewing angles. In practice,
L(p,r) enables us to view a luminaire luminance realis-
tically. That is, we can discern the luminance pattern
and identify all the bright and dark areas of the
luminaire from a given viewpoint.

Such an accurate representation of luminaire lumi-
nance distribution is not possible to obtain using far-
field photometry because the luminaire is treated as
a point source. Far-field photometry allows us to calcu-
late only average luminaire luminance at a specific
viewing angle, as follows:

1
Lr) = — sL(p,r)dAp (2)
Ap

Here, L(r) is independent of the position variable p.
Thus, far-field data offers us little hint as to how the
luminaire actually appears.

The accurate representation of luminaire lumi-
nance distribution made possible by near-field photo-
metry is especially useful in computer graphics, where
the numerical function L(p,r) can be translated to a
graphic image which produces a realistic picture of
the luminaire. :

Intensity distribution of the luminaire

It is sometimes convenient, in photometric calcula-
tions, to deal with intensity rather than luminances.
Using the luminous distribution function L(p,r), the
intensity distribution function can be determined by
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dlg(p,r) = L(pr)-dAp 3
where dA is the differential area that yields the inten-
sity distribution, and dAp is the projected differential
area in the direction r. In practice, one can consider
a luminaire to be comprised of a large number of
luminaire pieces, with each of the pieces having a dif-
ferent intensity distribution. dly, (p,;r) is a function
describing those discrete intensity distributions. Simi-
larly, when the distance is large compared to the size
of the luminaire, far-field photometry computes the
resultant intensity as follows:

1) = | dlua(p) @)
That is, the resultant intensity at a given direction is
simply the integration of the individual intensities at
that direction. Again, the far-field method offers us no
indication of the actual distribution of intensities on
the luminaire itself.

When using far-field photometry in applications
where the receiving surface is close to the luminaire,
the luminaire is again divided up into many pieces,
and the intensity distribution is computed as follows:

L) = I<r)(%)

With this method, the intensity distribution of the
luminaire at any location with area dA is proportional
to the entire luminaire distribution (area A), and that
proportionality is equal to"dAJA. The validation of
this equation demands photometric homogeneity of
the luminaire; ie., since I (r) is independent of loca-
tion, it is assumed that every discrete portion of the
luminaire behaves, photometrically, exactly the same
as the entire luminaire. Homogeneity is a necessary
assumption that enables us to use far-field photome-
try in near-field applications, but it does not account
for the luminaire’s variety of luminous intensities.

It should be noted here that farfield photometric
measurement does not require photometric homo-
geneity of the actual luminaire, only sufficient dis-
tance from the luminaire.

Note that Equation 4 is derived from the near- field
function dl(p,x). Farfield photometrics can be
derived from near-field photometrics. However, near-
field photometrics cannot be obtained from far-field
photometrics. Hence, far-field photometry can be
viewed as a specific case of the more general theory of
near-field photometry.

@)

Lighting Calculations

Because near-field photometry acknowledges the
diversity of luminance and intensity distributions on
the surface of the luminaire, it enables us to calculate
luminance and illuminance calculations as well as task
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contrasts and other visual quantities with greater
accuracy. If the luminaire were perfectly homogen-
eous, then the photometric data obtained by far-
field means would be identical to its near-field
data, and the lighting calculations, such as illum-
inances and luminances on a surface, would be exact.
In a real luminaire, however, perfect homogeneity is
seldom achieved.

For normal indoor lighting calculations, the exact-
ness of the calculations depends on the degree to
which the luminaire deviates from perfect homogen-
eity, and on the distance between the luminaire and
the location on the surface at which the calculations
are performed. This distance factor is important be-
cause the smaller the distance, the more influence a
localized portion of the luminaire will exert on the
outcome of the calculations. As the distance increases,
the localized portion begins to lose its dominance,
because more and more of the entire luminaire comes
into play. This is especially important in calculations
for task-oriented lighting systems, wall-wash lighting
systems, and indirect lighting systems, where illumi-
nances and luminances must be calculated on a sur-
face that is very close to the luminaire.

Surface illuminance calculations

For calculating illuminances on a surface due to a
luminaire, we can employ the principle of near-field
photometry that the luminaire may be divided up into
many pieces, each with the luminous distribution .
function L{p,r). _

At a given point s on a surface (Figure 3), the differ- .
ential illuminance dE is determined as follows:

_ L(pr)cos®-dAp

©)
d2

dE
where L(p,r) is the luminous distribution function of
the luminaire at point p, direction 1, and projected
area dAp; d is the distance between points p and s;
and & is the angle made between r and the direction
from which the illuminance is to be determined.

Since dl, (pr) = L(pr) dAp, the above equation:
can be written as

dLys(p.r)cos®
= _(12__

dE )

The total illuminance E at point s due to the entire;
luminaire can be determined as 3

T

S L(p,r)cos®dAp

Sf

E

8

cos®dl,(p,r)
d2



This equation shows that the overall illuminance at a

given point is the result of all the individual luminous

areas dA, each with a different intensity distribution.
.

Surface luminance calculations

Using Equation 6 set forth above, it is then possible
to determine luminance values on a perfectly diffuse
reflecting surface and/or a non-diffuse surface from
any given viewpoint.

For a perfectly diffuse surface, luminance of that
surface is defined as follows: L = @ x E where L is
luminance, ¢ is reflectance, and E is illuminance.
Hence, luminances may be calculated using the lumi-
nance distribution function as in Equation 6 above:

e s dE
s L(p,r)cos®daP
- Q —
d2
s cos®dl,(p,r)
= Q —_—
d2

L =

9)

For a non-diffuse surface (ie, a surface which has
directional reflectance characteristics), the reflectance
of that surface can be defined by a reflectance distri-
bution function. There are three sets of variables for
this function: the direction of incidence (ri), the direc-
tion of reflection (rr), and the location on the surface
of the point (ps) at which the reflectance is being
determined. We can represent the reflectance distri-
bution function of a surface by 8 (ps, ri, rr).

Again using Equation 6, luminance is calculated at
point ps as follows:

L(ps,ri,rr) s B(ps,ri,rr)dE

_ S b(ps,ri,rr)-L(p,r)cosPdAp (10)

d2
- “‘b(ps,ri,rr)-cosédld,,(p,r)
d2

Having established the luminance distribution func-
tion and reflectance distribution function, it is then
possible to determine the luminance pattern on the
reflecting surface from any specific viewpoint (Figure
4). This can be done by considering all the L(ps,ri,rr)
on the reflecting surface produced by L(p,r) of the
luminaire. It is convenient, though not always valid, to
assume that the surface is homogeneous; that is, the
reflectance of any point on the surface is independent
of its location. In that case, the reflectance distribu-
tion function becomes S(ri,rr).

Another quantity, the bi-directional reflectance dis-
tribution function (BRDF) is a special form of (ri,rr)

131

in which the vertical angle component of the reflec-
ting direction is fixed and rotationally symmetrical
(te., is independent of the horizontal angle). In order
to evaluate the luminance pattern of a reflecting sur-
face within a given field of view, one needs to have
many BRDF’s of various vertical angles for reflecting
direction. This is, of course, equivalent to obtaining
the reflectance distribution function, with the assump-
tion that the reflectance is rotationally symmetrical.

Determination of near-field photometry

In this portion of the paper we will outline the pro-
cedure for determination of the luminance distribu-
tion function, L(p,r), set forth above. To determine this
function, we will first empirically determine the inten-
sity distribution function, dIg(p,r), and then from
that determine L(p,r).

To determine dl(p,r), we can use the equation

E, = s cos®dl,,(p,r) a1

d2

If a large number of measurements of E’s from various
locations near and around the luminaire are obtain-
ed, the equation can then be solved for dl;z(p,r).

As mentioned at the outset of this paper, dI ;(p,r)
represents two sets of variables: the position variables
(x,z) and the directional variables (¢,0) where ¢ is the
horizontal angle and @ is the vertical angle. Hence,
dI,(pr) becomes dl,,(xy,z,¥.0).

In approaching this equation, one has to decide,
first of all, whether to use dl;\(xy,z,¥,0) as it is, a
function of five variables; or whether to treat it as two
separate sets of variables as follows:

Al (xy,2)(¥.0) (12)
In the latter case, each location (xy,z) is regarded as a
separate luminaire piece, each with an intensity distri-
bution Al (xy,z)(¥,0). We believe that this approach
is the better one, for the following two reasons:

1. Approaching the problem as a function of five
variables (xy,z,¥,0) involves finding an approximate
function of those variables, which has an averaging
effect that in essence gives equal importance to each
location (xy,z) regardless of its photometric signifi-
cance. The separation of the variables ((x,y,z)(¥,6)), on
the other hand, allows us to decide which locations
are more or less important photometrically. For
example, we may decide to put more computational
emphasis on the locations where radical distributions
are expected, and less emphasis where the distribu-
tions are well-behaved.

2. In addition, the separation of variables into two
groups allows us to take advantage of the symmetry
that usually exists in most real luminaires. By group-
ing together similar parts of a symmetrical whole, we
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can reduce the number of different intensity distribu-
tions to a minimum, thereby reducing the number of
data points to be gathered, and hence reducing the
computational complexity.

Using this method of separating the variables, and
dividing the luminaire into a number of smaller lumi-
naire pieces each with a different intensity distribu-
tion, we can determine Es as follows:

¥ Ala(y,z)@0)x cosd; XA,
i=1 di2

E =

S

(13)

where n is the total number of luminaire pieces,
and Ai is the area of the i luminaire piece. It should
be noted that one is not limited as to how the
luminaire is to be divided, and this division can be
totally arbitrary.

By taking illuminance measurements at many
points near and around the luminaire, the above
equation can be expanded to a system of equations:

E, = Zn: AIdA(X1:Y1azl)(¢,0) cos;,
i=1 di12
| - (14)
|
|
E = % Ala®gyz)h0)x cosdy

9 i=1 d__2
y

where E; is the first illuminance measurement and
E,; is the j*" illuminance measurement.
In matrix form,

=]

Or,

- -1

-] =]

The above equation directly evaluates I(xy,z)(y.0),
which involves a set of discrete number pairs of (,0)
for each luminaire piece. In choosing (¥,0) pairs, we
should take into consideration the fact that, due to the
nature of spherical coordinates, for equal increments
of ¥ and 8 the data points are not equally spaced; they
are farther away from each other near the equator and
crowded together near the poles, until they become
the same point (when § = 0 or 180 regardless of ).

One way to account for this fact is to choose (¥,0)
pairs in such a way that points on the unit sphere are
equal distance from one another. In other words, all
sets of three points on the sphere form equilateral
spherical triangles of equal areas.

(15)

(16)
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In a case where the luminaire distribution varies
drastically, we may wish to choose smaller spacing on
particular luminaire pieces. For any one piece, we can
decide how many points of (y,,0;) we need and how
they should be distributed. This, of course, is the beau-
ty of dividing the luminaire into discrete sections—
Al (xy,z) (¥,0) instead of using one all-encompassing
function I(xy,z,y,0).

The one potential drawback to employing this kind
of direct evaluation is the error introduced when a
value falls in between two measured values; for exam-
ple, when 6, ,. In this instance, we must compromise
by choosing a value for either 6; or 6, ,.

Or, if we want to be more exact, we can employ an
interpolating function which allows us to use a set of
coefficients for describing Al (xy,z)(¥.0), rather than
evaluating Alix(xy,z)(¥.,0) directly. If we select a good
function, we can not only reduce the number of un-
knowns to be solved, but we can also avoid the possibi-
lity of error due to discrete values of (¥,,8,). One such
function is the spherical harmonic function:

Y, (¥.0) = Ke ™P}(cosh) a7
where
i* 1 % —s . % +s
Pi(cosd) = i" +s+k({+Kk)lcos™ % sin™ "% (18)

s=-"%

2% +5(% —s)k!(% —s—k)!

It is a form of trigonometrical polynomials which is
bounded and well-behaved. This function allows arbi-
trary step size—i.., the distances between data points
need not be equal. This function is also orthogonal
with the base of the spherical coordinates: sin 6 df dy.
The advantage of this feature is that if a reasonable
number of coefficients isused, say, n terms, then the
first m terms are always the same regardless of the ex-
act value of n, provided that n>m. Hence we can in-
crease the precision of the interpolation within a
limited computing capacity, since we can compute the
first- m coefficients in one step, and then later com-
pute the remaining coefficients in a second step.
From the above equation,

AL (xy,2)(Y:0) = Yoo (¥,0) + Y 10(¥,.0) + Y, 1 (¥,0)
+Y2,0(\0’0) +Y2,il(‘p90) +Y2,12(¢’0) + LRI
.= CyHy(,0) + C;H,(¥,0) + C.Hy(y.0) + . . .

where C,. . .C, are the coefficients to be found.
Thus,

AIdA(x:Y,Z)(II’,o) = kz=;0 CH,(¥,9) (20)
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Combining Equations 13 and 20,

" X CH, 0 .
Es = g:l (k=0 ik- lk(¢ )) cos¢| (21)
1= di2
Therefore, as befbre,
. T CuHuW9) cosd,
E, - Z_:l (k=0 aaHa(¥ )) cosg, 29)
- &
|
|
| - .
g - v | (E CuHuwh) cosd,
i T
1 inj
In matrix form,
-1 _ THWHA T
LE’ B [ dcos¢ [C] 23)
Or
[ ] _ [H@HA T
LC - [ d?cos® E‘] (24)

In the above matrix, C is an array of coefficients of the
interpolating functions that describe the lumi-
naire pieces from 1 to n. Once the intensity distri-
bution function is known, the luminance distribution
can be determined:

= dIdA(P9r)

L(p,r) aA
p

(25)

Conclusion

Far-field photometry, which is actually a deriva-
tion of near-field photometry, is not applicable in all
lighting situations due to its assumptions regarding
test distance and photometric homogeneity. Near-
field photometry, on the other hand, recognizes the
fact that real luminaires are not photometrically
homogeneous, but can be divided into individual,
localized portions, each with a unique photometric
distribution. These distributions can be found, as
discussed above, either by direct evaluation or by
employing an interpolation function. Thus, with near-
field photometry, we can evaluate a luminaire with

more precision, and achieve greater accuracy in

lighting calculations.
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Discussion

I do not believe that anyone familiar with photo-
metry and its applications has ever disputed the in-
adequacy of farfield photometry where used for
prediction of near-field applications. Lautzenheiser,
Weller and Stannard (REF 1) attacked the exact same
inadequacy several years ago in their paper describing
a near-field photometry procedure.

The problem reduced to two parts is: 1. The test
procedure and technique required. 2. The suitability
of the mathematics used to apply the information.

The procedure described by Lautzenheiser and
Fawcett works well. Its disadvantages are the time to
perform the procedure and, translating the time into
dollars, the subsequent high cost.

The suitability of the mathematics is another prob-
lem. All polynomial functions have, by their very
nature, a degree of oscillation associated with their
use between data points. This oscillation becomes ap-
parent in the applications the author mentioned,
such as indirect and wall washers. The more patholo-
gically non-uniform the distribution, the greater
chance for oscillations that seriously affect the end
results, illumination on the work plane.

The author has stated the real problem throughout
his paper. We are living in a near-field, with no ade-
quate way of describing what happens in that near-
field. Pure mathematics can begin to describe what
happens, but empiricism lets us see it. We must make
a monumental effort to test the mathematics against
the empirical data so that we can really predict what
is going to happen in an installation.

I think the software developers call that procedure
Beta testing.

This discussion is not intended as an adverse
criticism to this paper; as a matter of fact, it is just the
opposite. I only feel that the author stopped before he
was finished and hope that he will publish further
papers covering not only rigorous mathematics, but
rigorous testing and confirmation procedures as well.

TL. Ballman
Building Acoustics & Lighting Laboratories, Inc.
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The author has provided us with an in-depth analy-
sis of a photometric procedure which is receiving in-
creasing interest. I am in full agreement that tradi-
tional photometry is inadequate in many applications.

At first review, the author’s technique for actually
performing the near-field measurements would seem
to involve a very large task. Illuminance readings at
many positions is necessary, and must be performed
for each desired luminaire piece. Perhaps several
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thousand photocell readings will be necessary to char-
acterize a luminaire. However, with modern technol-
ogy this need not be a problem. Using a dedicated
microcomputer connected through multiplexer elec-
tronics to multiple silicon photocells, such data can be
collected rapidly and accurately. A rate of 16 readings
per second should be attainable.

A different method of data collection is also possi-
ble. Near-field photometry can be performed using a
standard rotating mirror photometer, such as is
employed now by almost all photometric laboratories.
An attachment is placed on the arm which holds the
mirror, holding the photocell close to and aimed at
the test luminaire. In this case, the mirror is not used,
but as it rotates, the photocell itself rotates around the
luminaire at close distance. Only the luminaire piece
of interest is exposed. A complete photometric test
thus is performed on each luminaire piece. As all nor-
mal electronics, software and photometer automation
is used, each test is completed in a few minutes, mak-
ing this a practical data collection technique. This
method has the advantage of performing more com-
plete photometry, as a full intensity distribution is
taken on each luminaire piece, including data at ver-
tical angles close to 90 degrees, which are highly in-
fluential in glare calculation. Existing mathematics
and lighting design software then can be used with
this photometric data.

Upon examination, however, the two techniques
essentially are equivalent. Each consists of multiple
illuminance readings treated mathematically to de-
velop the quantities of interest. The difference is in
the mechanical and electronic systems used to collect
the data.

Many questions must be answered: How many
luminaire pieces? What test distance(s)? How many
data points? How do we block light from the remain-
der of the luminaire without overheating the lamps
and disturbing the readings?

L. Lewin, Ph.D.
Lighting Sciences, Inc.

Author’s Rebuttal
To T.L. Ballman and I. Lewin

In response to Mr. Baliman’s comment, the subject
of near-field photometry needs to be dealt with in
three different phases. The first phase is its founda-
tion—the theoretical understanding of its concepts
and of the mathematics needed for obtaining near-
field data. The second phase is a data gathering
technique that enables us to obtain a large mumber of
data in a convenient and practical manner. Lautzen-
heiser, Weller and Stannard proposed an approach.
The third phase is to engineer suitable mathematics
for the purpose of reconstructing the luminance
distribution function.

Only after the above three phases are resolved can
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we proceed on to the practical applications of near-
field photometry. “On Near-field Photometry” is in-
tended to address the first of the three phases.

In response to Dr. Lewin’s comments, the beauty of
the proposed technique in data gathering is that no
part of the luminaire needs to be blocked. The only
requirement is that readings be taken at many dif-’
ferent locations. The attachment on an existing photo-
meter that Dr. Lewin mentioned is exactly what the
author has installed in his laboratory for near-field
data collection.



