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Toward a Model of Visual

41

Performance: Foundations and

Data
Mark S. Rea

L. Introduction )

Visual performance has been a central topic of
research and discussion in illuminating engineering for
many years (see Boyce, 1981; and Rea, 1982a, 1984 for

-references). This interest is driven largely by practi-
tioners who want to know how lighting affects the per-
formance of workers in industrial and commercial en-

vironments. A practitioner might want to know, for ex-

ample, whether increased illumination levels can lead
to faster or more accurate performance in an asseinbly
task. Data and theory that could quantitatively relate
lighting and productivity for économic evaluations are,
perhaps, the most desirable research goals for lighting
practitioners (Clear and Berman, 1981).

Achieving these goals would not, however, be a trivial
accomplishment. Many factors associated with the
lighting, the task, and the person influence the quan-
titative relationships between the environment and a
person’s productivity. Perhaps it is impossible to com-
pletely delineate the multiple interactions between
lighting, task, and human variables. It should be possi-
ble, however, to more narrowly constrict consideration
of the number of alternative relationships between
these various factors and then to establish plausible and
useful calculation procedures of suprathreshold visual
performance for 1ighting practitioners. '

The purpose of this paper is to present such a
calculation procedure. The plausiblity, and therefore
utility, of this proposed model is based upon two prop-
-ositions. First, visual performance must be extracted
from task performance. The latter is generally an
unknown combination of both visual and nonvisual fac-
tors that contribute to the behavioral response. The con-
founding of visual and nonvisual contributions limits
the utility of a calculation procedure based on such

studies because one does not know how much of the -

predicted behavior is based upon visual responses
under the control of the lighting practitioner and how
miuch is based upon nonvisual (psychological, intellec-
tual, motor, motivational, and emotional) resporises
evoked by the multitude of other factors. Second, any
model of visual performance must be consistent with
the literature describing basic visual response. If visual
performance can be extracted from task performance,
then it shquld be possible to verify.the extraction as
’»
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an adequate representation of visual processing from
data available in the vision literature. Although com-
plete agreement may be difficult, well-established prin-
ciples in visual sciences limit the number of possible
descriptions of suprathreshold visual performance.

This paper describes in some detail, then, the foun-
dations of the proposed model in visual sciences as well
as the attempts to extract visual performance from task
performance at a simulated realistic task. It is not
argued that this visual performance model is complete.
A variety of other parameters (eg, size, luminous unifor-
mity, age of the observer) that are important to the com-
plete specification of visual performance, as well as fac-
tors uitimately necessary for making economic evalua-
tions of lighting for task performance (manual dexteri-.
ty, motivation, aesthetics, interactions with other sense
modalities), are not considered. Further, there are some
(explicit) assumptions in the model that require fur-
ther testing. Therefore, this paper and the model serve
as a milestone rather than the goal for lighting practi-
tioners. The paper hopetully establishes an appropriate
algorithm for a model of suprathreshold visual perfor-
mance, but it does not provide a complete economic
analysis relating lighting and productivity. A subse-
quent paper (Rea, in press) describes some of the re-
quirements for future studies attempting to describe
visual performarice more accurately.

1. Foundations

It is clear from a great deal of literature that supra-
threshold sensory responses are characterized by com-
pression. Small changes in stimulation about the adap-
tation level produce corresponding changes in sensa-
tion. Although the absolute magnitude of the sensation
increases with increasing stimulus intensity, higher
stimulation becomes progressively less effective in
eliciting incrementally higher sensation. Finally, a level
of stimulation will be reached where further increases
in stimulus magnitude produce no further increase in
sensation magnitude.

Sensory compression is exhibited in a wide variety
of invertebrate and vertebrate species, including
primates, in various sense modalities, and using a vari-
ety of psychophysical and electrophysiological measure-
ment techniques (see Lipetz, 1969; and more recently
Hood and Finkelstein, 1979, for references). This gen-
eral description of sensory compression also charac-
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terizes many other biological “communication” phen-
omena, including neural reception of internal
metabolic changes (Koshland et al. 1982). In short, com-
pression is widely accepted as a basic, general descrip-
tion of suprathreshold sensation including, for this
paper in particular, suprathreshold visual sensation, or
visual response, to luminous modulations.

Suprathreshold sensory compression has the follow-
ing form, first employed by Naka and Rushton (1966a,b)
in describing retinal responses in fish:

R/R,.. = T/NI" + k) )]
where: R = response
R,.. = maximum response
I = stimulus intensity
n = exponent
k= stimulus intensity producing half of

maximum response

As already implied, this expression is quite robust
in describing visual responses to luminous modula-
tions. The exact values of n, k, and R, in Equation 1
will vary with the experiment and depend upon such
factors as the chosen response (eg., evoked potential or
magnitude estimation), the response criterion (eg., a
particular peak or trough from the pattern of evoked
potentials), the site of recording (eg, the retina or the
cortex), the chosen stimulus conditions (eg, flashes or
gratings), any transformations of stimulus magnitudes
(e.g., logarithmic), and the species under investigation
(e.g., monkey, cat, or man). .

The expression is believed to characterize a physio-
logically important mechanism in all receptors known
as “self-shunting” (Lipetz, 1969). A single photorecep-
tor (rod or cone) in the retina, for example, is compris-
ed of many photosensitive units connected electrically
in parallel. Each small photosensitive unit has what is

called an “ionic pump;” that produces an electrical

potential between the photoreceptor and its environ-
ment. Thus, the photoreceptor has a steady-state, resting
potential maintained by these ionic pumps. When a
photon is captured by one of the photosensitive units
in the photoreceptor, the unit depolarizes briefly un-
til the ionic pump can restore the resting potential. This
depolarization is like an electrical shunt between the
photoreceptor and its environment that produces a
voltage drop in the whole photoreceptor. (This, in turn,
can produce a chain reaction in subsequent, higher-
order neurons that ultimately signal “light” to the
brain.) Photon catches by other photosensitive units in
the photoreceptor produce similar depolarizations, but
each subsequent unit depolarization, or shunting, has
relatively less influence on the total response (voltage)
of the photoreceptor until, finally, still more photon
catches produce no greater response from the photo-
receptor. As previously stated, Equation 1 conven-
iently describes such response compression in
photoreceptors.
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Compression is exhibited in neurologically highe
centers as well as in retinal photoreceptors. One exar
ple of visual response compression at the visual co
tex, adapted from Albrecht and Hamilton (1982), i
shown in Figure 1. Presented are the variations in elec
trical potentials produced by single neurons in monke
cortex in response to the contrast changes of :
luminous grating. The parameter values for Equatio:
1 describing the visual responses are given in the figur
caption. Adaptation luminance was 27 ¢d m? or 2.
log trolands with the 3-mm diameter artificial pupi
placed before the monkey’s eye.

This particular set of data was used to illustrate visua
response compression for a variety of reasons. First, th
species investigated, Macaca fascicularis, has a visua
system almost identical to man (Boynton and Whitten
1970; Valeton and van Norren, 1983), and man is ob
viously the species of interest for lighting practice. Sec
ond, cortical events should be more indicative of thi
psychophysical responses important to lighting prac
tice than neurologically earlier activity. (For exampl¢
retinal responses will not reflect processing from an
of the higher visual areas.) Third, the recorded visua
responses were to variations in luminous contrast, alsc
employed as stimuli in the present experiment. Fourth
the technique for obtaining suprathreshold visua
responses was completely different from that employec

" in the present experiment, so similarities betyween the

results of the two independent experiments would b
mutually reinforcing in the development of a supra
threshold visual response model. Finally, no other elec
trophysiological data with all of the above qualification
were found.

From the previous discussion it should not be in
ferred that only electrophysiological data can be de
scribed by Equation 1. Psychophysical data have alsc
been characterized in this way. Hood and his coworker.
(Hood et al., 1978; Hood and Finkelstein, 1979; Hooc
et al., 1979) have conducted studies specifically address
ing the suitability of Equation 1 for describing
psychophysical responses. They have found that this ex
pression can be used to describe subjectivé estimate;:
of flash brightnesses, by magnitude estimations, as wel
as detection thresholds. Boynton and Whitten (1970
have also used this expression in describing detectior
threshold data, and like Hood and his coworkers, hawv
related psychophysical responses to those recorded elec
trophysiologically. Rea (1983) has also used this formula
tion to describe the data from a psychophysical stud:
using measures of speed and accuracy at the numerica
verification task employed in the present experiment

Even in studies where this particular formulation ha
not been tried, Equation 1 can be used to describe com
pressive psychophysical responses. For example

" Blackwell and Blackwell (1980) have presented dat:

relating the Visibility Level (in this case the contrast
of Landolt rings to the probability of correctly identi
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fying the ring orientation. The dashed line in Figure
2 is based on Blackwell and Blackwell’s “log-ogive”; the
solid line is based upon Equation 1. Clearly both for-
mulations describe the data well.

Theoretical justification for a particular formulation
must rely on criteria other than an adequate curve fit
(Valeton, 1983). Both the log ogive and Equation 1 can
be fitted to many data exhibiting compression. More
work (eg., Valeton and van Norren, 1983; Valeton, 1983)
will have to be conducted to theoretically limit the
range of possible “curve fitting strategies”” Nevertheless,
the robustness of Equation 1 has led to its current
preference in the visual sciences for modeling com-
pressive suprathreshold visual responses, and,
therefore, forms the basis of the visual performance
model presented here.

IIl. The Numerical Verification Task

In a previous report (Rea, 1981) it was shown that per-
formance, defined in terms of time and errors, at a
reading-writing task was strongly affected by the dif-
ferent luminous contrasts between the white paper, the
luminance of which was held constant, and the (darker)
inks. Further, it was shown that a single function could
describe the relationship between performance and
contrast, no matter how that contrast was produced.
The purpose of the present experiment was to collect
more data at the same task using a wider range of
background luminances, and, with these data, for-
mulate a visual performance model based upon Equa-
tion 1.

A. Methods and procedures

Except for a few minor differences, the stimulus
materials, the experimental testing room, and the pro-
cedures were like those described in the previous
numerical verification experiment (Rea, 1981). Subjects
were seated at a desk and asked to compare, from top
to bottom, two printed number lists, a reference sheet
on the left and a response sheet on the right, for
discrepancies. The time to complete the comparisons
and the number of errors, both omission and commis-
sion, were recorded after every trial.

Data were collected in a black testing room with il-
Tumination provided to the work desk from a single
fluorescent luminaire having a light emitting aperture
of 955 x 955 cm. A sanded plexiglass diffuser was in
the luminaire throughout the experiment. Illumination
levels at the center of the task were (approximately) 50,
93, 171 and 700 1x, depending upon the experimental
conditions. Illumination levels were adjusted slightly
during the experiment to hold task background
luminances (i2, the luminances of the reference sheets)
constant at 12, 22, 41, and 169 cd m™ from the posi-
tion of the subjects’ eyes.

Lighting geometry, or direction of illumination, af-
fects task contrast (Rea, 1981). The direction of illumina-
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L d
tion was changed in this experiment by pivoting the
desk (and the subject) about a point at the center of
the horizontal task. Eight desk positions were employed
in the experiment (Table 1).

Subjects were comfortably positioned at a chin rest
while seated at the horizontal desk. The viewing angle,
from vertical, and distance to the center of the task were
42 degrees and 50 cm, respectively. From the subject’s
viewing position, the middle digits of the reference and
response lists were separated by 7.1 degrees of visual
angle. Similarly, the middle digits were 13 and 19
minutes of visual angle wide and high, respectively.

Every reference and response sheet was a column of
twenty, five-digit numbers; each five-digit number in the
column was separated’ by a horizontal line. A small
calibration square was also printed at the top of each
column for photometric measurements. Two sets of 32
reference sheets, printed in black gloss or gray matte
ink, were used in this experiment. The photometric
qualities of these two sets under gonio and (simulated)
hemisphere conditions as well as under similar ex-
perimental conditions are described in the earlier
report (Rea, 1981). Contrast measurements of the ink
calibration squares on one example from each set of
reference sheets at the eight experimental desk posi-
tions are shown in Table 1. Contrast (C,) is calculated
by the formula:

Ly — Ly

C = Ls 2

where: L; is the luminance of the calibration square

and L, is the luminance of the paper adjacent to
the calibration square.

Four groups of 32 high-contrast response lists were
employed in this experiment. Three groups were like
those used in the previous experiment. The mean fre-
quency of errors in the fourth (new) set was also 30.
The standard deviation of the list errors in the new set
was 1.41; the standard deviations for the other sets were
1.19, 1.32 and 1.48. Contrasts of one example of the
response sheets at the eight desk positions are also
given in Table 1. .

Four male and four female subjects between the ages
of 19 and 24 (M = 22) years participated in the experi-
ment. These subjects were different from those
employed in the earlier experiment, but all had ex-
cellent, uncorrected vision as determined by a battery
of visual screening tests from a Keystone Ophthalamic
Telebinocular. The data from one female subject was
not included in the analysis because she dramatically
shifted her response strategy partway through the
experiment.

The experimental protocol was almost identical to
that employed in the earlier experiment. Subjects were
asked to compare the reference and response number
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Figure 1—A contrast response function recorded electrophysiologically
from the visual cortex (adapted from Albrecht and Hamilton, 1982,
Figure 5). Equation 10 (based on Equation 1) describes both the solid
and the dashed lines. The dashed line was generated using a threshold
term (C; = 0023 in Equation 10); the solid line did not include a
threshold term (C, = 00). The best fitting, by a least squares
criterion, parameter estimates for the data using a threshold term
(dashed line) are: n = 16, k/Ly = 0050, and VP,,, = 1.00. Com-
parable values without a threshold term (solid line) are: n = 2.7, k/Ls
= 0073, and VP, = 097
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Figure 3—Performance plotted as a function of contrast (scaled
logarithmically) at the four background luminances used in the
numerical verification task. The reciprocal of the time to compare
the reference and response lists (1/S) is used as the performance
measure. The solid lines are best fitting curves using Equation 10,
which is based on Equation 1, and the four contrast threshold values
in Table 3.
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Figure 2—Accuracy in identification of Landolt ring orientation (from

Blackwell and Blackwell, 1980, Figure 24). Dashed line is described
by the “log ogive” (Equation 3 in Blackwell and Blackwell, 1980) where
the free parameters a, v, and . (the logarithm of Rp.;) are 037, 0.110,
and 0.9, respectively. The solid line is based on Equation 1 (or Equa-
tion 10, where C; = 0) where n = 961, k/Lp = 0.205, Ryyy (08 VPpy)
= 1.00. :
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Figure 4—The average time to compare the reference and response
lists (S), in seconds (s), plotted as a function of the number of “ticks”
(both hits and false positives) that subjects marked on the response
lists.
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Figure 7—The four estimates of the parameter VP,,,, from Table 3,  Figure 8—Three-di

plotted as a function of Os. O; = logi(Ls), where L is the
background luminance defined in Equation 2. The solid line, defin-

ed by the equation inset into the figure, provides interpolated values
of the parameter VPo.. between 12 and 169 c¢d m~,

presentation of the visual performance
model. Relative visual performance (RVP), scaled linearly, is plotted
as a function of contrast (C, defined in Equations 2 and C2) and
luminance (L defined in Equation 2), both scaled logarithmically.
The levels of RVP for selected values of C, between 0.08 and 1.0 and
values of Ls between 12 and 169 cd m™ are represented by the lines
constituting the surface. The levels of RVP for values of C, between

00 and 1.0 and values of L; between 12 and 169 cd m™ may be
calculated from the equations in Appendix C.
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in Equation 2).
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lists as “quickly and accurately” as possible during prac-
tice and experimental trials. Discrepancies found by the
subjects were marked on the response list with a pen
held in the right hand. Total elapsed time (S), misses,
and false positives were obtained for each trial. Sub-
jects were not given feedback about their performance
during the experiment.

The experimental design was devised to hold con-
stant or minimize, by counterbalancing or randomiza-
tion, psychological effects like motivation and fatigue.
This experimental design can be briefly described as
follows. Every subject made the list comparisons under
all four illumination levels. To ensure that presentation
order was not confounded with illumination level, the
illumination levels were counterbalanced across sub-
jects. Eight desk orientations were presented in dif-
ferent orders to the subjects under each of the four il-
lumination levels. Some of the desk orientation presen-
tation orders were counterbalanced across illumination
level within subjects. The remainder were counter-
balanced across subjects. Four randomly distributed
replications of the black gloss and of the gray matte
reference lists were presented to the subjects at each
of the desk orientations (8 trialslorientation). In all,
each subject performed 256 experimental trials during
a one-day session lasting approximately six hours. One
subject was run per day. It should be noted that the ex-
clusion of the data from one subject prevented com-
plete counterbalancing across the subjects.

B. Results

The data (Appendix A) are quite similar to those
published earlier for the numerical verification task
(Rea, 1981, 1983; Slater, Perry and Crisp, 1983) and for
other tasks (eg., Poulton, 1969); the relationship between

each performance measure and contrast, at a given .

adaptation level, can be described as suprathreshold
sensory compression (Section II). At each background
luminance, performance improves rapidly above con-
trast threshold. As contrast further increases, perfor-
mance improves but at a decreasing rate until, finally,
still higher contrasts produce little, if any, change in the
level of performance. The relationships between the
reciprocal of the total time to compare the two number
lists (1/S) at each reference-sheet background luminance
(Ls) and contrast (C,) (Table Al) are shown in Figure
3* Best fitting curves, based upon Equation 1, were
drawn through the four data sets to help illustrate the
different trends and relationships.

The four sets of data in Figure 3 show the same
general form of response compression. Further, each
set of data is similar in form to those from cortical
neurons in Figure 1, at least over the range of contrasts
employed in the present experiment (ie, above C, =
0.1). While each set of data presented in Figure 3 shows
the same general form of compression, it is also worth
noting two important differences between the curves
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at the different luminance levels. First, for matched con-
trasts, performance tends to be higher at higher
luminances. Second, as contrast increases, performance
tends to saturate more quickly at the higher luminances.
Essentially, these two trends indicate that performance
improves with higher task luminances. Not only does
the absolute level of performance increase with higher
luminances, but performance is also higher over a
larger range of contrasts. )

C. Refinements of the 1/S data

Evidence supports the argument that performance
in this experiment was largely determined by visual
parameters, and the effects of nonvisual factors were
minimized. The experimental design, the photometric
control of the stimuli, the similarity between time and
error response functions, and the similarity between
these data and those obtained in other vision ex-
periments (eg., Albrecht and Hamilton, 1982), all in-
dicate that visual performance, relatively uncon-
taminated by nonvisual factors, was measured. This
evidence might suffice in an argument favoring 1/S as
the measure of visual performance at the numerical
verification task. However, at least two refinements to
the 1/S data are desirable to improve these data to
characterize visual performance.

1. Action time—Weston (1935, 1945) argued that the
time taken for subjects to mark targets, the so called
“action time;” in his Landolt ring search task should be
subtracted from the total search time to characterize
visual performance more accurately. The same argu-
ment can be made for transforming the time data ob-
tained in the present experiment. The average total
time taken to compare the two number lists can be plot-
ted as a function of the average number of “ticks” (both
‘'hits and false positives) made by subjects in the experi-
ment. As can be seen in Figure 4, a simple linear func-
tion with a slope of 0.8 can be used to characterize the
relationship between these two variables** Thus, the
average time per “tick” is about 08 s. It was then a sim-
ple matter of subtracting 0.8 s for each hit and false
positive in a trial (S;) from the total time taken by sub-
jects to compare the two number lists (S) in that trial.
This transformation of the time data in Table Al was
used to estimate the so-called reading time (S,) in the
experiment. Thus,

S, =8-S 3)

2. Time taken to read the response list—The reading time
taken to compare the number lists (S;) is the sum of
the time taken to read the reference list (S,,) and the

*Appendix A discusses the reasons for limiting the discussion to 1/S
as the measure of performance.

**A series of analyses of variance showed that response time (“ticks”)
was not systematically related to (ie, did not interact significantly
with) any of the experimental variables (luminance, ink pigment den-
sity, and desk orientation).
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time taken to read the response list (S.y). For a given
adaptation luminance (L;) in this experiment, S,
should be approximately constant because the contrast
of the response lists was high and, with the compressive
response behavior obtained here and elsewhere (Sec-
tion II), nearly constant. On the other hand, S, is ex-
pected to vary and to be determined by the contrast
of the reference sheet on a particular trial (C,). When
the contrasts of the response and the reference lists are
the same, at a given adaptation level, it is reasonable
to assume that S, is equal to S, Thus, S, is a cons-
tant (y) equal to %S, under these conditions. The
average response list contrast in Table 1 was equal to
0.7. From the four curves in Figure 3 it is possible to
estimate the value of 1/S at the four luminance levels
for a reference sheet contrast of 0.7 (Cy;). Thus, a
measure of visual performance (VP) can be estimated
by taking into account S, and v, where:

VP = [(SLs, C, — Sa) — % (SLy, Cpy — So)] 4)
=Sy LsC - 7" (5)
= (Sref, Ls, C,)" ’ (6)

Equation 6 defines the measure of visual perfor-
mance, VP, for this experiment. Namely, VP is the
reciprocal of the time taken to read each reference list
of a particular contrast.(C)) at a particular adaptation
luminance (L;). Table 2 presents the values of VP, the
average values of VP.

D. Threshold contrast

Threshold coritrasts are estimates of the transition
from imperceptible to perceptible contrast at different
background luminances, and, therefore, denote the
lower limits of contrast perception in a visual perfor-
mance model. Threshold contrasts have been common-

ly .employed in psychophysical studies (eg, Graham,

1965; Brindley, 1970) and are even evident in several
electrophysiological studies (e.g., Albrecht and
Hamilton, 1982; Tolhurst, Movshon and Thompson,
1981). Unfortunately, it is difficult to make estimates
of threshold visibility with the procedures employed
in the numerical verification task. Subjects tended to
quit under difficult conditions so it was impossible to
obtain data at the critical, steep transition between
threshold contrasts and slightly perceptible contrasts.
Threshold contrasts for the number lists had to be
estimated at each background luminance by another
technique.

Threshold contrasts of the mimber lists were ob-
tained with a Visual Task Evaluator (VTE) (Blackwell,
19'70) over several luminance levels, including the two
lowest background luminances used in the numerical
verification task. The relationships of these threshold
data to background luminance have been described
mathematically in an earlier report (Rea, 1982b).
However, the VTE elevates the contrast threshold of fine

Summer 1986 JOURNAL of the Illuminating Engineering Society

spatial details, like these numbers, relative to “free view-
ing” (Rea and Ouellette, 1984). To estimate contrast

threshold without the intervening VTE optics, a gray -
nuniber list was placed on the work desk and, by
carefully adjusting the lighting geometry, and thus the
veiling reflections from the sheet (Section IIL.A), it was °
possible to reduce the numbers to a “readability”
threshold criterion at a luminance of 67 c¢cd m™. By
normalizing the “readability” contrast threshold func-
tion, obtained with VTE, to 0055 at 67 cd m?, the .
contrast value measured following the free viewing
method, it was possible to estimate the contrast
thresholds (C) at the four luminance levels used in -
the present study (Appendix C, Equation Cl). Table 3 °
provides the four values of C, derived by these !
methods.

E. The formulation for visual response compression
Equation 1 may now be rewritten in the following
form:

VP = [AL'AAL" + k)] VP,. -
where:
VP = the level of visual performance, as measured

in units of the reciprocal of the time taken
to read the reference sheet, from Equation
6;

n and k are as defined in Equation 1;

AL is the absolute value of a luminous increment
or a luminous decrement from the thresh-
old criterion at a given adaptation
luminance.

Thus, for luminous decrements (dark ink on bright
background) like those employed in this experiment,
AL = L1, - Lt ®)
where:
L7, is the luminance of the target at threshold
=Ly (1 -C)

L; and L, are as defined in Equation 2;

C. is the threshold contrast at a given L; de-
scribed in Section IIL.D, and can be determined
from Equation C1 in Appendix C.

Alternatively, Equation 8 can be written as

AL = Ls(C, - C) . 9
where:

C, is the reference sheet contrast.

By using Equation 9 and rearranging terms, Equation
7 can be rewritten, for calculable simplicity, as

VP = {ACYAC + (WL} VP (10)
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where:
AC = Cu - Cx

There are three unknowns in Equation 10, VP,., 7,
and k. A nonlinear regression computer routine was
used to provide the best estimates by a least squares
criterion, of these three parameters at each adaptation
luminance. The results of the regressions are presented
in Table 3.

E A general algorithm of suprathreshold visual performance

It is desirable to predict visual performance at more
background luminances than those actually empldyed
in this study. A series of interpolations was performed
on the parameter estimates (n, k, and VP,,) in Table
3. Figures 5 to 7 show the three sets of parameter
estimates plotted as a function of 0, or O,, logarith-
mic transformations of background luminance. Second-
degree polynomials were used to estimate, by a least
squares criterion, the differént parameter values bet-
ween 12 and 169 c¢d m™. It was assumed (see Appen-
dix B) that all of the parameter values in Equation 10
(except C,) increase monotonically with background
luminance. The logarithmic transformations of the
abscissae were sometimes employed to limit non-
monotonic behavior by the interpolation routines. The
best fitting polynomials and expressions are presented
with each figure.

These expressions enable one to calculate relative
visual performance (RVP) for alphanumeric reading
material of any contrast, where the paper is brighter
than the ink and the luminance of the paper is between
12 and 169 cd m™ (or, for white matte paper, between
illuminances of 50 and 700 1x). Maximum RVP cor-
responds to a contrast of 1.0 at 169 cd m™. Appendix
C describes the procedures for calculating RVP.

Figure 8 is a graphical representation of RVP as a
function of contrast and luminance, both scaled log-
arithmically. Examination of this surface from several
perspectives illustrate more clearly the influence of con-
trast and luminance on visual perforinance according
to this model. .

RVP is plotted as a function of luminance for several
contrasts in Figure 9. Two features are readily apparent
from this figure. First, visual performance changes very
little from medium to high contrasts. For example, there
is virtually no difference in RVP at contrasts between
05 and 10; changes in contrast are much more dramatic
between lower contrasts (eg:, between 0.10 and 0.15). Sec-
ond, the changes in RVP across luminance at high con-
trasts (eg., 0.5) are slight, whereas, luminance is much
more important to RVP at low contrasts (eg;, 0.15). These
two points lead to the conclusion that visual perfor-
mance will be relatively high and stable for medium
to high contrast tasks, but veiling reflections and re-
duced illumination levels can be very lmportant for low
contrast tasks.
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Figure 10 shows RVP plotted as a function of con-
trast at three luminance levels. Several points are worth
noting in this figure. First, visual response compression
is readily apparent in this figure; RVP is characterized
by a steep initial slope and saturation as contrast in-
creases. Second, the point of saturation is higher at

_higher luminances; RVP is always slightly better at

higher luminances, even for medium and high con-
trasts. Third, the “knees” of the RVP response functions
are higher and more prominent at higher luminances,
indicating that a high level of visual performance can
be maintained at lower contrasts the greater the level
of illumination. Finally, this figure shows the shift in
absolute contrast threshold; the lower limit of RVP, with
higher luminance.

Figure 11, augments this last point concerning con-
trast threshold. Contrast, scaled logarithmically, is plot-
ted as a function of luminarice, also scaled logarith-
mically; the curves trace constant levels of RVP. These
constant criterion curves are, in principle, identical to
directly obtained threshold functions relating contrast
and luminance. It is important to note in Figure 11, that
the highest constant criterion levels of visual perfor-
mance are unattainable at lower luminances, even at
the highest contrasts.

IV. Discussion

Figures 8 through 11 help illustrate the predictiors
of the model as well as the similarity of these predic-
tions to findings from a variety of electrophysiological
and psychophysical studies.

A. Threshold conirast

Many electrophysiological and psychophysical studies
have, for example, used threshold behavior to describe
visual response (eg, Boynton and Whitten, 1970;
Albrecht and Hamilton, 1982; Tolhurst et al, 1981).
Threshold contrast has been shown repeatedly to
decrease with adaptati(')n luminance (eg, Blackwell,
1946), and the model makes predictions of threshold
consistent with these observations.

The exact shapes of the various threshold functions
in Figure 11 may be different from other published data
for a variety of reasons (Rea, 1982b). The independent
(alphaaumeric stimuli) and dependent (time) variables
on which the model is based are somewhat unorthodox
for the vision community, although they were specifical-
ly chosen to be “realistic” and therefore relevant to il-
luminating engineering. Further, these “threshold”
curves were derived from the model and reflect the
suprathreshold data obtained in the numerical verifica-
tion task. They were not obtained from a lengthy
threshold experiment in which subjects were asked to
adopt various constant criteria and judge the visibility
of stimuli at different contrasts and luminances. In
principle, there should be no difference in the data ob-
tained by either procedure, but it seems impractical,
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if not impossible, to expect subjects to adopt and then
maintain all of the various criteria necessary to generate
the data required for functions comparable to those in
Figure 11. Therefore, it is unlikely that a successful
model of suprathreshold visual performance can be
developed from threshold data alone.

The CIE model of visual performance (CIE, 1981a,b)
is based on just one threshold function. Higher con-
stant criterion functions, called Visibility Levels (VLs),
are obtained by multiplying the single threshold curve
by fixed multiples (CIE, 1981a,b). This assumption, that
the various VL curves are parallel in log contrast ver-
sus log luminance space, is not justified by the data ob-
tained in this experiment and is therefore inconsistent
with the predictions from the RVP model (Appendix
C)* In this respect, at least, the RVP model presented
here is probably better at making a priori predictions,
and, therefore, in attempting to describe suprathresh-
old visual performance at a realistic, reading-writing
task. :

B. Suprathreshold response

Studies directly measuring suprathreshold visual per-
formance have shown that it will increase with both con-
trast and luminance (eg, Weston, 1935, 1945; Boyce,
1973, Smith and Rea, 1980; McNelis, 1973). The RVP
model makes predictions similar to the data generated
in these studies by predicting an interaction between
luminance and contrast. The model predicts that
suprathreshold visual performance will increase only
slightly with luminance when the contrast is high and
more strongly when contrast is low. As with the
threshold data, however, the model predictions and the
data from'these various studies do not always agree
quantitatively. It will be argued in a later paper (Rea,
in press), however, that the results of properly controll-
ed visual performance studies (eg, McNelis, 1973)
should yield results very similar to the predictions
generated by the model. The contrast response func-
tions obtained from cortical cells in monkeys (Figure
1), for example, are both qualitatively ?nd quantitatively
similar to predictions from the model** This marked
similarity, known as “psychophysical isomorphism”
(Kaufman, 1974; Dawis, 1981), is likely the result of the
experimental control over the many “nonvisual” fac-
tors that can contribute to the measured responses. Still,
it should be realized that the RVP modél is based largely

*1t is possible to change the shapes of the threshold curves in the
CIE model, depending upon a variety of estimates of free parameters
established after results are obtained (Rea, 1982b). For a given set
of parameters, however, the constant criterion (VL) function would
be parallel in a log contrast versus log luminance coordinate system.
**Albrecht and Hamilton (1982) did not use a threshold term when
fitting their data with Equation 1. Adding an appropriate threshold
term makes the parameter estimates comparable to those for the
model (Figure 1). Conversely, the deletion of a threshold term when
fitting the present data, makes the parameter estimates like those
published by Albrecht and Hamilton.
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upon the latency of response and most electrophysio-
logical data, eg., Albrecht and Hamilton (1982), are
based upon the amplitude of response. The relation-
ships between the amplitude and latency response func-
tions can be complex (Ermolaev and Kleinman, 1983;
van der Tweel et al.,, 1979), but similarities have been
shown (Vaughn et al., 1966). More studies in electro-
physiology may more clearly delineate the relationship
between amplitude and latency.

C. Subjective impressions

It is also important to note, that the model seems to
be consistent with our everyday experiences. One has
little problem reading high contrast newsprint under
virtually any domestic or commercial lighting system.
As the model predicts, high contrast reading materials,
like a newspaper, are relatively insensitive to variations
in illuminance or contrast reducing veiling reflections.
On the other hand, low contrast reading materials, like
some blueprints or photoduplications, are quite sen-
sitive to such variations. It is much more important for
people viewing such material to have lighting systems
that give high illumination and reduce disability glare
and veiling reflections. The model quantitatively under-
scores the importance of these everyday occurrences.

V. Conclusions

These broad -confirmations of the model aside,
however, it must be stressed that the model still requires
extension and testing. Not all of the important stimulus
parameters have been studied, and there are a variety
of inadequately tested assumptions built into the
model. For example, the size of the printed text was not
varied in the experiment. Also, targets brighter than the
background (as with visual display terminals) have not
been studied. Importantly too, it was assumed (Appen-
dix B) that n, k, (or k) and VP,. should increase
monotonically with luminance (Figures 5, 6 and 7). Fur-
ther, it was assumed that contrast threshold data from
different subjects could be linked with the suprathresh-
old data reported in this paper to make a more com-
plete model.

Although these and other issues need to be in-
vestigated, it seems unlikely that the model is grossly
inaccurate in representing suprathreshold visual per-
formance. Visual response compression, which forms
the basis of the model, is a widely observed phenom-
enon. The model makes predictions consistent with
documented trends in threshold and suprathreshold
behavior and, importantly, is consistent with our every-
day experiences. Finally, a sensitivity analysis showed
that reasonable variations in estimates of the parameter,
n, did not significantly affect the model predictions
over the range of contrasts and luminances en-
countered in commercial environments.

There is no question that the model must be extend-
ed and revised to some degree, but, based upon the
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arguments made above, the model would appear to have
utility for lighting practitioners as an interim algorithm
for calculating relative visual performance at alpha-
numeric reading tasks. Therefore, the RVP model
should be considered as a milestone toward the ultimate
goal for an economic model of task performance.
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Table 1—Stimulus sheet contrasts

Reference Sheets

Desk Angle* Black gloss Gray matte Response Sheet

0 0.199 0.095 0.670

7.5 0.202 0.092 0.672
15 0.260 0.100 0.675
20 0.371 0.107 0.684
25 - 0.491 0.112 0.698
30 0.606 0.121 0.714
45 0.835 0.134 0.759
90 0.894 0.156 0.826

*These values are the clockwise azimuth angles, in degrees, of the
vertical plane defining the subject’s line of sight to the center of the
task with respect to the center of the luminaire. The 0-degree azimuth
angle, for example, corresponds to the vertical plane bisecting the
subject’s nose, the center of the task and the center of the luminaire.

Table 2—Visual Performance (VP)

Lg
(o8 12 22 41 169
0.092 0.0389 0.0362 0.0463 0.0554
0.095 0.0386 0.0415 0.0467 0.0504
0.100 0.0441 0.0412 0.0513 0.0570
0.107 0.0443 0.0472 0.0511 0.0597
0.112 0.0457 0.0543 0.0585 0.0660
0.121 0.0551 0.0574 0.0638 0.0676
0.134 0.0560 0.0590 0.0602 0.0665
0.156 0.0551 0.0632 0.0666 0.0699
0.199 0.0640 0.0638 0.0687 0.0667
0.202 0.0610 0.0680 0.0712 0.0749
0.260 0.0688 0.0667 0.0711 0.0745
0.371 0.0658 0.0670 0.0650 0.0705
0.491 0.0703 0.0778 0.0826 0.0789
0.606 0.0717 0.0775 0.0706 0.0774
0.835 0.0720 0.0738 0.0743 0.0726
0.894 0.0671 0.0712 0.0775 0.0801

Entries are values of visual performance (ﬁ), the average of the
reciprocal of the time required to read the reference sheet [(Sren™'].

Ls is the luminance of the reference sheet in units of cd m™
C, is the contrast of the numbers as defined in Equation 2.

Table 3—VP parameters

C, Ls n k VPoax
0.0702 12.1 0.993 0.249 0.0726
0.0632 22.4 1.45 0.634 0.0740
0.0581 41.2 1.45 1.03 0.0752
0.0506 169 a 1.69 4.27 0.0762
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Appendix A ]

Table Al gives the response measure (total time,
misses, false positives and score) averages for the com- §
binations of sixteen contrasts and four background.
luminances produced in the experiment. Analyses of
variance (ANOVAs) for the experimental design
variables are presented in Table A2 for each response |
measure. The response measure called score is based 3§
‘upon the other three and calculated by the formula: ;

Score = (T - E) 100/ (S + 5) (A1) ;
where: . ;
T = total number of comparisons per trial (always
20) 4
E = number of errors, both misses and false
positives, committed per trial
§ = total time to complete the comparisons per’

trial (in seconds).

This measure was devised by Smith and Rea (1980) 3
to monotonically increase with visibility and to incor-
porate both speed and accuracy, traditional measures
of visual performance (Weston, 1935, 1945). The score
formulation is a somewhat arbitrary measure of per-
formance, most strongly determined by total time (S). |
(There was a correlation of —-0.95 between the trial }
scores and the trial times in this experiment.) In fact, ;
errors play only a minor role in determining the score ;
values. Nevertheless, and as noted in the earlier report -
(Rea, 1981), the contrast response functions for total
time, misses, and false positives are nearly identical in
these experiments.* Ideally then, the relative weight- }
ings of the primary measures would make little dif-
ference in a strictly linear characterization of perfor-
mance combining time and errors. Score as defined in
Equation Al is not linear, however. The constant (5 s)
in the denominator of Equation Al introduces a
nonlinearity into the score formulation. Although the
constant is relatively unimportant at most response
times observed in this experiment (usually longer than
25 s), it would obviously be more important at shorter
response times. '

It is still advantageous to minimize the importance
of errors in a score formulation for this experiment,
despite the similarity of the contrast response functions
for all of the primary measures. The absolute levels of
both error measures are low in these experiments. Even
small, random fluctuations in the subjects’ behaviors
could strongly influence trial scores if these integer,
dependent variables were more strongly weighted. To
limit the influence of random perturbations in the false

* The marked similarity between the primary measures total time,
misses and false positives, indicates that the classic, psychological
“speed-accuracy trade-off” was not reflected in the response averages.
This identity of the total time and the error responses is strong, but
indirect, support for the hypothesis that these averaged results are
largely based upon visual rather than nonvisual factors.
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positive or miss responses, total time should be weighted
more heavily than errors to characterize visual perfor-
mance, assuming time and errors vary the same way
with contrast. As stated in the previous paragraph, this
was the case.

In summary, only measures based upon trial times
are discussed as indices of visual performance in this
report because a) the score formulation includes a small
nonlinearity, b) misses and false positives are less
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reliable measures of’ performance than total time, c)
manuscript brevity, and, importantly, d) the contrast
response function for the reciprocal of time is not
substantively different from that for score, the
reciprocal of misses or the reciprocal of false positives.
The reciprocal of trial times was used because it is more
convenient to think of the measure of performance in-
creasing with increasing visibility.

Table Al1—Means and standard errors (SE) for the four dependent variables used in the experiment.

Score Time (S) Misses False Positives
Mean SE Mean SE Mean SE Mean SE
Le = 12 cd m?
C.
0.092 42.2 1.55 419 1.69 0.786 0.173 0.071 0.050
0.095 42.0 1.37 42.2 1.57 0.643 0.156 0.107 0.079
0.100 45.7 1.94 38.9 1.86 0.786 0.149 0.071 0.050
0.107 45.0 1.58 38.8 1.47 0.786 0.166 0.071 0.050
0.112 46.0 1.83 38.2 1.65 0.893 0.165 0.036 0.036
0.121 50.6 2.03 344 1.45 0.786 0.173 0.036 0.036
0.134 50.8 1.66 34.1 1.44 0.714 0.169 0.036 0.036
0.156 51.2 1.565 344 1.16 0.321 0.104 0.000 0.000
0.199 54.9 1.99 319 1.37 0.464 0.131 0.000 0.000
0.202 54.7 2.12 32.6 1.74 0.357 0.092 0.000 0.000
0.260 56.6 1.98 30.8 1.23 0.393 0.119 0.000 0.000
0.371 55.7 2.04 31.5 1.53 0.429 0.120 0.036 0.036
0.491 57.5 2.15 30.5 1.52 0.429 0.174 0.000 0.000
0.606 58.5 2.16 30.2 1.46 0.250 0.098 0.000 0.000
0.835 56.9 1.88 30.1 1.27 0.607 0.181 0.000 0.000
0.894 56.2 1.93 31.2 1.24 0.321 0.127 0.000 0.000
Ls = 22 cd m?
G,

0.092 41.8 1.87 434 241 0.536 0.131 0.393 0.130
0.095 44.9 1.77 39.9 2.14 0.679 0.163 0.107 0.060
0.100 440 1.46 40.0 1.66 0.750 0.160 0.071 0.050
0.107 48.6 2.09 36.9 1.90 0.536 0.120 0.071 0.050
0.112 51.6 1.60 34.2 1.55 0.393 0.165 0.036 0.036
0.121 53.0 1.99 33.2 - 1.51 0.571 0.166 0.000 0.000
0.134 54.4 2.05 32.7 1.49 0.250 0.098 0.036 0.036
0.156 55.1 1.73 31.6 1.34 0.464 0.120 0.000 0.000
0.199 55.6 1.55 314 1.10 0.214 0.079 0.000 0.000
0.202 56.5 1.66 30.4 1.12 0.464 0.120 0.000 0.000
0.260 56.0 1.68 30.7 1.09 0.393 0.119 0.071 0.050
0.371 574 2.11 30.7 1.45 0.321 0.104 0.000 0.000
0.491 60.9 2.08 28.6 1.38 0.286 0.087 0.000 0.000
0.606 59.8 1.74 28.7 1.04 0.357 0.117 0.000 0.000
0.835 58.4 1.79 29.3 1.10 0.500 0.109 0.000 0.000
0.894 57.3 1.50 1.02 0.464 0.131 0.000 0.000

29.8
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Table Al (continued)

T T

__ Score _ Time (§) __ Misses False Positives
Mean SE Mean SE Mean SE Mean SE
Lg = 41 ¢d m?
C,
0.092 46.6 1.64 37.1 1.36 0.750 0.175 0.179 0.074
0.095 47.5 1.64 36.9 1.46 0.571 0.188 0.107 0.079
0.100 48.8 1.59 35.0 1.19 0.857 0.152 0.107 0.079
0.107 50.0 1.60 35.1 141 0.500 0.121 0.036 0.036
0.112 53.0 1.49 32.6 1.08 0.429 0.120 0.036 0.036
0.121 55.0 1.63 31.2 1.13 0.571 0.130 0.000 0.000
0.134 55.1 1.80 32.1 1.26 0.143 0.067 0.000 0.000
0.156 56.4 1.73 30.6 1.20 0.500 0.109 0.000 0.000
0.199 57.7 1.67 30.1 1.09 0.214 0.079 0.000 0.000
0.202 57.5 1.68 29.6 0.97 0.536 0.150 0.000 0.000
0.260 58.9 1.92 - 29.6 1.18 0.214 0.079 0.000 0.000
0.371 56.7 1.95 30.9 1.35 0.321 0.104 0.000 0.000
0.491 60.7 1.66 27.6 0.89 0.571 0.120 0.000 0.000
0.606 58.4 1.88 29.7 1.18 0.321 0.127 0.000 0.000
0.835 59.5 2.02 29.0 1.16 0.357 0.128 0.000 0.000
0.894 59.9 1.84 28.4 1.02 0.464 0.109 0.000 0.000
Lg = 169 ¢cd m?®
C,

0.092 52.0 1.84 33.3 1.42 0.679 0.137 0.071 0.050
0.095 49.8 1.80 35.1 1.57 0.643 0.180 0.107 0.060
0.100 52.1 1.58 32.8 1.04 0.607 0.107 0.107 0.060
0.107 54.3 2.01 32.0 1.23 0.536 0.150 0.000 0.000
0.112 56.3 1.73 30.4 1.08 0.536 0.109 0.000 0.000
0.121 57.6 1.81 30.1 1.06 0.321 0.116 0.000 0.000
0.134 57.0 1.92 30.3 1.18 0.464 0.120 0.000 0.000
0.156 57.7 1.51 29.6 0.94 0.429 0.130 0.000 0.000
0.199 56.6 1.63 30.3 1.02 0.464 0.167 0.000 0.000
0.202 59.7 1.86 28.6 1.05 0.393 0.139 0.036 0.036
0.260 59.2 1.68 28.7 - 0.97 0.464 0.141 0.000 0.000
0.371 58.6 1.99 295 . 1.17 0.393 0.119 0.036 0.036
0.491 60.9 1.80 280 099 0.393 0.119 0.000 0.000
0.606 60.0 1.69 28.2 0.89 0.464 0.120 0.000 0.000
0.835 60.1 2.36 © 290 1.31 0.357 0.106 0.000 0.000
0.894 61.5 1.75 27.8 0.97 0.286 0.101 0.000 0.000
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Table A2—Analyses of variance (ANOVAs) for the four dependent variables

1. Dependent Variable = SCORE

EFFECT SS DF MS F P
L 7514.1 3 2,504.7 78628 001
(6] 93353 7 13336 41.865 001
I 25,829 1 258290 810.84 001
A 93,437 6 155730 48887 001
LO 10435 21 49.690 15599 -
LI 139038 3 46362 14554 001
LA 6,278.2 18 348.79 10949 001
(0] 33339 7 476.27 14951 001
OA 2,1972 42 52315 1.6423 005

. IA 1,4973 6 24955 78338 001
LOI 52582 21 25039 0.78602 -
LOA 78269 126 62.118 1.9500 001
OIA 66766 42 15897 0.49903 -
LIA 96093 18 53385 16759 05
LOIA 2,855.7 126 22664 0.71147 -

2. Dependent Variable = TIME (S)

EFFECT SS DF MS F P
L 4,6088 3 15363 89.798 001
(0] 50290 7 71843 41994 001
I 12,034 1 12,0340 703.40 001
A 49333 6 8,222.2 48060 001
LO 751.82 21 35801 20926 005
Ll 1,0935 3 364.51 21306 001
LA 4,2205 18 234.47 13.705 001
Ol 2,161.0 7 308.72 18045 001
OA 1,3570 42 32310 1.8886 001
IA 35383 6 58971 3.447 005
LOI 42994 21 20473 1.1967 -
LOA 54528 126 43.276 25296 001
OIA 30863 42 73483 0.42952 -
LIA 781.44 18 43413 2.5376 001
LOIA 2,4277 126 19.268 1.1262 -

light level

N

desk orientation

ink pigment density

subject
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Table A2 (Continued)

3. Dependent Variable = Number of MISSES

EFFECT SS DF MS F P
L 36490 3 1.2163 25296 -
o 49682 7 0.70974 1.476 -
I 15563 1 15563 32366 001
A 49671 6 8.2785 17.217 001
LO 89358 21 0.42552 088494 -
LI 23008 3 0.76693 15950 -
LA 13910 18 0.772176 16071 -
(o)1 78878 7 1.1268 23435 025
OA 14.481 42 034479 0.71'705 -
IA 76596 6 1.2766 2.6549 025
LO1 9.2662 21 0.44125 091766 -
LOA 53.224 126 0.42242 087849 -
OIA 14.046 42 033442 069550 -
LIA 76172 18 0.42318 0.88008 -
LOIA 48035 126 038123 0.79283 -

4. Dependent Variable = Number of FALSE POSITIVES

EFFECT SS DF MS F P
L 0.1808 3 0060268 1.78902 -
o 16585 7 0.23693 69984 001
I 1.2857 1 1.2857 37978 001
A 15056 6 0.25093 7.4121 001
LO 081920 21 0039009 1.1523 -
LI 016518 3 005506 16264 -
LA 0.43638 18 0024244 0.71612 -
(o)1 13571 7 0.19388 57268 001
OA 30212 42 0071933 2.1248 001
1A 0.8471 6 0.14118 4.1703 001
LOI 1.1562 21 005506 1.6264 05
LOA 40011 126 0031755 093799 -
OIA 16975 42 0040418 1.1939 -
LIA 063951 18 0035528 1.0495 -
LOIA 38516 126 0030568 090293 -

L
o
I

A

= subject
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Appendix B

A. VP,

The assumption that VP, increases with background
(adaptation) luminance has support from the data by
Valeton and van Norren (1983). In their study, a micro-
electrode was placed adjacent to a single photoreceptor
in the retina of a monkey. Changes in electrical poten-
tial were recorded for changes in light level about a given
adaptation luminance. Adaptation luminances ranged
from darkness to 7 log photopic trolands. A single func-
tion, based upon Equation 1, described the relative cone
response data for both increments and decrements about
any given adaptation luminance.

Figure Bl shows the single-cone response function that
was shifted vertically (arithmetic ordinate) and horizon-
tally (logarithmic abscissa) to fit their data at different
adaptation luminances. As adaptation luminance in-
creases the curve shifts systematically toward the right
along the abscissa and downward along the ordinate.
Thus, the absolute levels of the maximum and minimum
responses change relative to the zero response crossings
(there is zero response at the adaptation luminances).
With increases in the adaptation luminance, the absolute
value of the maximum response, for increments, de-
creases while the absolute value of the minimum res-
ponse, for decrements, increases.

In the present experiment only luminous decrements
were used. Thus, one expects the absolute value of the de-
crement response to increase with background luminance,
based upon the data from Valeton and van Norren. This
is consistent with data in Figure 3 and with the interpola-
tion routine employed to estimate the values of VP,

(Figure 5).

Bnandk

Table 3 shows a general tendancy for n and & to increase
with background luminance for the data in this experi-
ment. For the model it was assumed that estimates of n and
k at background luminances between 12 and 169 cd m™
could be estimated from monotonically increasing inter-

polations (Figures 6 and 7). The assumption that £ in--

creases with adaptation luminance is clearly correct since
its magnitude is heavily dominated by the background
luminance (Ls) over the range of the model. The para-
meter ko, however, may be defined as the abscissa value,
relative to the origin, producing half of maximum
response, and it can be estimated from k in Table 3. Div-
iding each estimate of % by the corresponding background
luminance gives values of k.. It is also true that &, tends to
increase with background luminance, further supporting
the assumption that k increases with background
luminance,

The assumption that n increases with adaptation lumin-
ance is somewhat more tenuous, however. Although there
was a tendency for n to increase monotonically with
background luminance in this experiment, the true values
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of n might not increase with light level. Given this uncer-
tainty in the true values of n, a sensitivity analysis was con-
ducted to see how predictions of relative visual perfor-
mance (RVP in Appendix C, Equation C10) would change
if n were constant a) at the lowest estimate of z in Table 3
(n = 10), b) at the highest estimate (» = 1.7), and c) at the
average estimate (n = 14). Variations in the estimates RVP
never exceeded 10 percent and rarely exceeded 4 percent
over the entire range of the model. Thus, reasonable varia-
tions in the parameter n do not seriously affect the model
predictions.

Appendix C

The procedure for calculating relative visual perfor-
mance (RVP) in Figure 11 is given below. Strictly speaking,
the model is applicable to young adults reading positive
contrast (dark ink on bright background) letters or
numbers, each character subtending a visual angle of 0.2
degrees in width. The range of luminances in the model
is between 12 and 169 cd m™. The reciprocal of time ne-
cessary to read the alphanumeric stimuli “as quickly and
accurately as possible” is the measure of visual
performance.

1. Select task background luminance, Ly, within the range

of
12 < L; < 169 cd m™.

2. Calculate threshold contrast, C, at the selected L,
where
C. = 00418 [ (0308/L,)™ + 10)* (C1

3. Select task luminance contrast, C,, where L; is greater
than the target luminance, Ly, and

L, — L,

C = L C2)
4. Calculate the parameters n, k, and VP.,., where

n = 0882 + 438 x 0, — 605 x 67 (C3)
where O, = logu[logi(Ls)]

logk = —2.25 + 1.77 x ©, — 0217 x ©% (C4)
where ©, = logw(Ls)

VP = 00628 + 00120 x O, - 000268 x O3 (Cb)

5. Calculate the predicted level of visual performance, VB
where,

VP = {AC/AC" + (WLy)']}VPus (C6)
where:
AC = Cv —CI

For values of AC< 0, VP = 0

6. Visual performance relative to that at L, = 169 cd m™
and C, = 10 (RVP) may be determined by the following
equation:

RVP = VPf
where:

f=00760 =VP,, at L, = 169 cd m® and C, = 10

(C7)
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Toward a Model of Visual Performance:

A Review of Methodologies

M. S. Rea

Introduction

The lighting practitioner directly influences the
speed and accuracy of visual response (ie., visual per-
formance) by affecting the illumination level and
lighting geometry in a space. Yet visual performance
is clearly but one aspect of performance-at a realistic
task; training, intelligence, motivation, and many other
factors also play an important role in defining a per-
son’s level of task performance® Special procedures
and measurement techniques are required to mini-
mize the impact of these “non-visual factors” on mea-
sured behaviour when trying to isolate visual per-
formance from task performance. As argued in this
paper, many studies that describe performance of
realistic tasks have not incorporated such procedures.
What is more, two or more visual factors may be con-
founded in some of these studies. Thus, the measured
behaviour has been influenced by some unknown
combination of visual parameters. Although these
studies give a general flavor of how lighting and other
stimulus parameters affect visual performance, it is
usually impossible to delineate unambiguous rela-
tions between human visual responses and stimulus
conditions. If the lighting practitioner is to follow re-
cent, more refined lighting recommendations,’ it will
be necessary to have more refined information from
research to implement the recommendations.

The present paper is a critical evaluation of litera-
ture from the area of illuminating engineering on the
performance of human subjects at a variety of visual
tasks. It is concluded that most of these experiments
have procedural problems or have dealt with more
than visual performance alone. Because visual perfor-
mance cannot be isolated in the experiments, most of
them cannot be used to set precise guidelines for
relating lighting and visual performance, nor can they
be used to validate or extend the visual performance
model (Figure 1)* presented in the companion paper.

Experiments to investigate performance at several
kinds of visual task are examined in the present paper.
Each of the subsequent sections is devoted to one task.
Common problems with procedures and measure-
ments are identified and discussed in terms of the dif-

*Except where noted, all reported contrast values describe stimuli in
which the target is darker than the background. Contrast (C) is defined
as: C = (Lg — Ly)/Ly, where Ly is the luminance of the background and
Ly is the luminance of the target. '
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ficulties they create in specifying the relationship
between lighting and visual performance. Finally,
recommendations for future experimentation and
measurement are proposed that can lead to precise
lighting recommendations and facilitate assessment
and advancement of the visual performance model
proposed in the companion paper.*

Numerical verification task

Performance of the numerical verification task
forms the basis of the model. Data using the same task
have already been reported.* Briefly, subjects are
required to find and then indicate discrepancies
between juxtaposed printed number lists “as quickly
and accurately as possible” on a given trial. The lists
are examined once from top to bottom, and the time
to complete the comparisons and note the number of
errors of both omission and commission are recorded
for each trial. In one set of numbers lists (response
lists) all the sheets are printed in high contrast ink on
white paper; in the other set of numbers lists (refer-
ence lists) the sheets are printed with different types
of ink on white paper. The lists are usually examined
under different levels of illumination and lighting
geometry. Experimental combinations of all these fac-
tors produce different task background (adaptation)
luminances and contrasts.

Dependent variable

A performance measure, score, based on total time
and errors identified during each trial® was used as
the dependent variable in all the numerical verifica-
tion studies prior to this. '

Score = (20 - E)(S + 5) )

where
E = number of errors per trial (both misses and
false positives)
S = total time (s) to compare the lists.

This measure can affect the characterization of
visual performance for a variety of reasons described
in Appendix A of the earlier report by Rea.* There it
was noted that score has a slightly nonlinear relation
with the primary measures, misses, false positives, and
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total time. Further, total time does not completely
isolate the changes in visual response due to experi-
mental manipulation because it is a composite of the
times to 1) mark discrepancies, 2) read the lists of
fixed contrast (ie., response lists), and 3) read lists of
different contrasts (ie., reference lists).

The visual performance model was based upon
time to read the reference lists while performing the
numerical verification task. It is argued that this refin-
ed measure best characterizes visual performance for
reading alphanumeric stimuli. Direct comparison of
visual performance model predictions and score
values from the numerical verification task can be
made in Figure 2, which presents score data from Ap-
pendix A of the previous report and model predictions
of relative visual performance (RVP) from equation
(C7) of Appendix C'. The dashed lines through the
score data are described by equation (Al), Appendix A.
All RVP predictions were normalized to units of score
using one common factor; in this case the factor was
equal to the average of the four values of R,,,,, one
for each background luminance, determined from
equation (Al). ‘

Although the model predictions are similar to the
performance score values, it is clear from Figure 2(a-
d) that the score data are flatter at medium and high
contrasts than the model predictions. Further, the
model predictions become less like the performance
score values as illumination level (background
luminance) is reduced. Thus, the characterization of
visual performance depends not only on the experi-
mental design and protocol but also on any transfor-
mations of the response measure. The dependent
measure used in any study must be carefully scrutin-
ized to determine whether it is an appropriate repre-
sentation of visual performance. Ideally, the perfor-
mance measure should be based simply on visual
response times Or errors.

Confounding subject groups with experimental variables

Despite the use of a common task, other factors
specific to each of the studies using the numerical
verification task (eg., subjects, viewing angles, size of
numbers) can affect the observed levels of perfor-
mance. Further, many undefined factors such as
motivation, manual dexterity, or intelligence can also
influence the results. The experimental conditions
employed by Rea® are (not surprisingly) almost iden-
tical to those reported later.* In the earlier study a
different group of young adult subjects with excellent
uncorrected vision and positioned in a chin rest per-
formed the numerical verification task at a fixed
background luminance of 67 cd m~2 Figure 3 shows
the mean scores from that study, plotted with the
highest (169 c¢d m~?) and lowest (12 ¢cd m~?) curves
through the score data from Figure 2. The curve
through the score data from Rea’s earlier study® was
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obtained using equation (Al) in Appendix A.

Although the two sets of data are similar, the ab-
solute levels of performance score were different in
the two experiments. Subjects in the earlier study had
higher scores, on average, than did subjects in the
more recent report. Thus, even at a task run under
essentially identical conditions and using subjects
nominally equivalent, the absolute levels of perfor-
mance for two populations of subjects differed for
unknown reasons.

At present, model predictions of visual perfor-
mance will have to be normalized to experimental
data. Each set of data can differ in the absolute level
of performance owing to differences in the experi-
mental variables or, as shown, to unspecified differ-
ences amoung sampled subject populations. A dif-
ferent normalization factor will probably be required,
therefore, whenever new subject populations are
employed.

Applying the model predictions to different experi-
ments having changed subject populations presents
no difficulties, but utilizing various subject popula-
tions within one experiment can be very problematic.
It is possible to compare model predictions with ex-
perimental data only roughly if variations in the stim-
ulus parameters are confused with sub-populations of
subjects within an experiment. For example, if one
sub-population of subjects is given a task under one
illumination level and another sub-population is
given the same task under another illumination
level," it will be impossible to determine whether the
observed differences in performance are due to dif
ferences in illumination, to differences in the subject
groups, or to both factors.

In principle, very large sub-populations should have
very small differences in their average performance
potential. It is not always practical, however, to employ
very large populations in one experiment. Even fairly
large sub-populations (e.g., n = 40; see section entitled
Tinker’s reading experiments) may be different in
visual capabilities, motivation, manual 'dexterity, etc.
As these factors influence measured performance, it is
always better to reduce the likelihood of potential pro-
blems by ensuring that subject groups (sub-popula-
tions) are not confounded with experimental manipu-
lations. Although confounding subject groups with
stimulus variables in an experimental design has not
been a problem in studies of the numerical verifica-
tion task, it was a problem in several of the studies to
be discussed later in this paper.

Photometric measurements

Clearly, errors in the photometric specification of
the stimulus conditions can adversely affect compari-
sons between experimental data and model predic-
tions. In studies by Rea?® Slater et al.? and Slater and
Perry® so-called “calibration squares” were printed
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with the numbers on the reference and response
sheets so that target luminances as well as background
luminances could be measured to determine task con-
trasts. For a known lighting-task-subject geometry,
then, it was possible to specify task contrast. Only in
lighting conditions approaching those in a hemisphere
do variations in geometry become inconsequential to
task contrast. Directional lighting can greatly influence
the perceived task contrast and, therefore, the expect-
ed level of visual performance.

In a recent study by Rea et al."! it became clear that
subjects deliberately try to avoid contrast-reducing
veiling reflections in order to maintain a high level of
performance. In previous studies by Rea*® and by
Slater and Perry’ subjects’ head positions were fixed
in a chin rest so that the lighting-task-subject geometry
and therefore the task contrast were known. Smith
and Rea® seated subjects in front of a white viewing
booth roughly simulating hemispherical lighting con-
ditions. Head and body positions were not restrained
in any way, so that variations in head position did not
seriously affect task contrast because the lighting was
non-directional** But although head position could
not seriously affect task contrast, head and body
movements could affect apparent size of the stimuli.
As Rea et al."' also point out, subjects tend to move
closer to the task as illumination levels are reduced,
increasing the apparent size of the stimuli and
thereby permitting better performance. It is therefore
impossible to use the Smith-Rea data to isolate com-
pletely the effects of illumination level from apparent
task size in assessing visual performance. This type of
confounding is also present in several of the studies
discussed below.

Conclusions

The numerical verification task can be useful in
characterizing visual performance, but special precau-
tions with regard to experimental design and execu-
tion must be implemented. In particular, task con-
trast, luminance, and size must be carefully controll-
ed. An appropriate measure of performance, free of
distortion, must also be defined before the data can
be used to validate and advance a visual performance
model.

Tinker’s reading experiments
Early reading performance tests were conducted by

**It should be noted that a calibration square was not printed on the task
sheets used by Smith and Rea.” The contrast of the task materials had to
be estimated by a comparison method. The luminance of the printed digits
was estimated by measur ts of a larger piece of paper matched in
estimated under hemispherical lighting and did not vary when subjects
adjusted their postures, there may have been some discrepancies between
the contrasts actually seen by the subjects and the estimated contrasts that
were reported in the study.
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Tinker using different task contrasts and various
levels of illumination.”®' In his 1959 experiment, for
example, several groups of subjects performed speed-
reading tests.'> Of special interest were two groups of
university students of unknown age or ophthalmic
capability; one group of forty saw printed passages
with dark ink on white paper under six illumination
levels, and another group of forty saw passages
printed with dark ink on grey paper under the same
six illumination levels.

Confounding with task contrast

As pointed out by Poulton,” changing the reflec-
tance of the task background affects not only task con-
trast but adaptation luminance as well. Performance is
known to vary with both parameters, and when they
are confounded, as in this experiment, differences in
performance cannot be attributed to one factor alone.
Nevertheless, the contrasts of the two printed targets
employed by Tinker were both quite high (according
to the reported reflectances). The compressive visual
response to contrast should produce nearly equiva-
lent levels of performance for high contrasts at equal
background luminances. Assuming that all other fac-
tors are constant, performance differences should
therefore be mainly attributable to changes in back-
ground reflectance.

A serious confounding in Tinker’s experiment
(identified in the previous section) was between sub-
ject groups and background reflectances. Differences
in the visual capabilities of the sub-populations or in
their psychological profiles (eg., intelligence or moti-
vation) could have contributed to the observed dif:
ferences in reading performance at the different task
background reflectances. In fact, there were reliable
differences between the two sub-populations at match-
ed task background luminances, indicating that even
for relatively large sub- populations (n = 40), absolute
differences in group performance potential can affect
the results.

Photometric measurements

For reasons outlined in the previous section, there
is also uncertainty about the accuracy of the reported
photometric values that define the visual conditions
experienced by the two groups of subjects. First, the
reported values were reflectance measurements of
paper and ink under a lighting geometry different
from the lighting conditions actually experienced by
subjects during the experiment. Further, documenta-
tion was not provided as to how the reflectance mea-
surements were obtained from the very small letters in
the printed text. Unless luminance measurements are
obtained from some “calibration square” printed with
the text it is unlikely that the reported values accu-
rately represent ink density. Second, although both
groups of subjects saw the reading passages under six
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levels of illumination ranging from 54 to 4300 Ix, it is
not clear that lighting geometry and thus task contrast
did not change with changes in illumination level.
Finally, it is possible that subjects systematically ad-
justed their posture under the different lighting
geometries to improve task contrast and thus main-
tain a high level of performance. In truth, the report-
ed photometric values may only be crudely represen-
tative of those actually seen by the subjects.
Although there is a consistent performance differ-
ence across illumination level for the two subject
groups (confounded, of course, by the two back-
ground reflectances), the levels of performance across
luminance are approximately constant. Even the
relative performance of the two subject groups is
questionable, however. As discussed in the preceding
section, reading performance can probably be main-
tained if a subject systematically moves closer to the
task as illumination is reduced. It seems very likely
that the subjects in Tinker’s experiment were unre-
strained and behaved in this manner. As in the Smith-
Rea study,’ it is difficult to use these data to advance
a visual performance model since illumination level
and apparent size of text were probably confounded.

Dependent variable
The measure of performance for this experiment
was the time to read a passage. At least two problems
with the dependent measure make it of questionable
utility for characterizing visual performance. First, the
levels of comprehension were assumed to be high but
were never verified, although Tinker reported that
previous tests gave high levels of comprehension near
100 percent. In principle, the single dependent mea-
sure of reading speed will not reflect any possible dif-
ferences in “accuracy” of reading (ie., comprehen-
sion). Without some direct verification of a high cor-
relation between time and errors (eg., Rea®), reading
speed may be a distorted representation of visual per-
- formance. Second, the very high levels of comprehen-
sion imply a very easy test for university students.
Depending upon the kind of questions, it is con-
ceivable that university students could answer many of
the questions correctly without even reading the pas-
sages. In essence, Tinker’s comprehension measure
may be completely insensitive to visual performance.
A performance measure should be realistic, but it
must also be sensitive to the parameters manipulated

in the experiment.

Conclusions

Although Tinker’s experiment may give a general
indication of visual performance at a reading task, a
variety of serious procedural problems make it im-
possible to use these data, or those from his earlier
studies, to evaluate the present, or any other, model of
visual performance quantitatively. Other, more care-
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fully controlled studies of reading performance
would have to be used to validate and advance the
visual performance model. Special care must be taken
in this kind of experiment, however. Reading for com-
prehension may actually require more thinking than
seeing,'® and precautions must therefore be taken to
ensure that the recorded responses reflect visual per-
formance alone.

Experiments using visual search

Many investigators have employed search tas
The most widely known was first employed by
Weston.?* In this kind of experiment subjects are
asked to search an array of Landolt rings for those
having a specific gap orientation. The arrays can be
printed in different sizes and inks and on different
background reflectances. In an attempt to explore
parametrically some of the factors important to visual
performance, subjects are presented with the arrays
under different levels of illumination. As argued
above, the results obtained in such experiments de-
pend not only on the visual factors employed in the
experiment but also on factors such as the accuracy of
the photometric measurements, experimental design
and protocol, subjects’ behavior, and scoring pro-
cedures.

ksl(),l7-20

Weston’s early Landolt ring experiments

Documentation Although Weston’s Landolt ring search
tasks** are commonly-cited studies of visual perfor-
mance, they were not adequately documented. Light-
ing geometry and task specularity (both target and
background) interacted to affect luminance and con-
trast. Nowhere does Weston document how ink and
paper reflectances were measured or under what con-
ditions. Consequently, very little is known about the
stimulus conditions actually presented to his subjects.
Further, in his 1945 studies® both paper and ink
reflectances were varied to change task contrast, so
that it is imposible to attribute the measured effects to
changes in contrast, background luminance, or both.
Weston did not provide details about the positions
assumed by subjects during testing. Presumably they
were unrestrained and could adjust their posture and
position in performing the task to suit themselves.
Again, one must assume that illuminance and ap-
parent size are confounded in the study. The visual
capabilities of the subjects are unknown. Neither is it
clear what experimental design was employed. One
does not know, for example, whether all subjects saw
all conditions. Weston’s early landmark efforts in in-
vestigating visual performance must be lauded, but it
would be impossible to have confidence in more than
the general trends indicated by these experiments
because of inadequate documentation.

Dependent measure The performance scoring pro-
cedure is one of the most serious problems with
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Weston’s experiments. He was the first to attempt to
combine speed and accuracy in a performance metric,
and many others have followed his example; several
are discussed in this paper. Accuracy in Weston’s ex-
periment was defined as the number of hits (ie,
targets found and marked) relative to the total
number of targets in the array.

A proper measure of accuracy should also consider
the number of correct rejections (ie, non-targets
found identified and not marked). Further, without
knowing both hits and correct rejections it is impossi-
ble to tell how many stimuli were actually inspected
during the recorded time (one minute or shorter) and
therefore impossible to make a proper estimate of
speed (stimuli inspected per unit time). Consequently,
his performance score is completely inappropriate as
a measure of visual speed and accuracy. More will be
said about the importance of determining the num-
ber of stimuli actually inspected per unit time in the
Boynton and Boss section of this paper.

Consistency and reasonableness of results The two sets of
performance curves for 30-min gap sizes reported by
Weston in 194522 are shown in Figure 4. Not only are
the two sets inconsistent in their prediction of perfor-
mance but some of the smoothed functions are
counter to known trends of visibility versus lumi-
nance. For example, the slopes of some of the perfor-
mance versus luminance functions for low contrast
stimuli are flatter than those for high contrast stimuli.
In effect, this indicates that light level is less important
to low-contrast material than to high-contrast materi-
al, a prediction that can be easily dispelled by a simple
demonstration. If one looks through rotating, crossed-
polaroid filters at high and low contrast stimuli on a
luminous background, the low-contrast stimulus dis-
appears much more quickly than the high-contrast
stimulus as background luminance is reduced.
Conclusions One is left to conclude that Weston’s
studies cannot be used as a basis of validation or ex-
tension of a visual performance model owing to in-
adequate procedural details, inappropriate scoring
procedures, and inconsistent results.

Modern experiments
Boyce Boyce® employed Weston’s Landolt ring search
task with some procedural differences. Boyce used
total, self- paced scanning time as a measure of visual
performance. Unlike Weston, who identified the im-
portance of eliminating response times from esti-
mates of visual performance, Boyce ignored response
(action) time. Errors (of both omission and commis-
sion) were also used to index performance.
Although total time and errors changed with varia-
tions in illumination, these dependent variables were
not compared directly to discover whether they gave
similar or dissimilar representations of visual perfor-
mance. Actually, the data were probably too variable to
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permit proper comparison. As it is not known whether
errors and total time are alike, it is uncertain whether
either response measure actually characterizes visual
performance.

Four sets of Landolt rings were presented to all sub-

jects, one set for each combination of two gap sizes
(1.5 and 2.4 min) and two contrasts (C = 0.4 and C =
0.7). Actually, it is not clear from the published
report®® whether the reported task contrasts were
obtained under the actual experimental conditions.
In a personal communication, Boyce has confirmed
that the photometric measurments were obtained
under the conditions actually experienced by the sub-
jects. The different sets of Landolt rings were pre-
sented under five different levels of illumination. Sub-
jects’ viewing angles and distances were controlled,
avoiding systematic confounding of illumination level
and apparent size, but a different set of subjects was
used for each of the five light levels. Because subject
groups are confounded with illumination levels, com-
parisons between performance values and the predic-
tions from a visual performance model would not
necessarily coincide.
Waters and Loe In the experiment by Waters and Loe,"
arrays of high-contrast (C = 09) Landolt rings (gap
size = 1.5 min) were presented to subjects under dif-
ferent light levels and different light sources. Every
subject saw all combinations of light level and light
source in a Latin square experimental design.

It is not clear how the contrast value reported for
the Landolt rings was obtained, but measurements
were made “in the position they were placed for the
tests (p. 7)."" For very high contrast targets like those
used in the experiment, however, it is not important
to determine the contrast values accurately owing to
the predicted saturation in visual response at medium
to high contrasts. Despite uncertainties in the mea-
surement technique, therefore, predictions of visual
performance at a high contrast task should not be
grossly inaccurate. Unfortunately, subjects were not
adequately restrained while performing this task. As
illumination levels were reduced, they could move
closer to the task to maintain a high level of
performance.

Performance was defined as the sum of the hits and
correct rejections divided by the “net inspection
time” Net inspection time was taken to be the total
time to scan the array, row by row, minus the “action
time” to mark targets in the array. There was no justifi-
cation for combining net inspection time, hits, and
correct rejections in this way; the measure of perfor-
mance must therefore be suspect. Nevertheless, this
combination seems to be appropriate since both hits
and correct rejections as well as action time are taken
into account.

Conclusions Modern experiments using the classic Lan-
dolt ring search task have used methodologies that are
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improvements on- those used earlier by Weston.**

Largely typified by the two discussed above, these ex-
periments incorporate techniques that do not com-
pletely overcome possible confoundings. Boyce* con-
trolled viewing angles and distances but used dif-
ferent subject groups for different illumination levels.
Waters and Loe' used the same subjects throughout,
but did not constrain head position or posture.
Beyond these problems, and for reasons to be outlin-
ed, even the best controlled search tasks may be inap-
propriate for estimating visual performance.

Boynton and Boss

Boynton and Boss'® conducted an unusual and well
documented study that did not incorporate the Lan-
dolt ring matrix. An array of sixteen, randomly locat-
ed stimuli was presented to young adults with normal
visual acuity under different conditions of stimulus
contrast (luminous decrements) and background lum-
inance. Viewing distance was held constant while sub-
- jects searched for a small square (9 -min on a side)

among 15 circles (10 min in diameter). For half the
trials 16 circles were presented (ie., no square was
presented). The time between onset of the stimulus ar-
ray and a button press by the subject, indicating that
a square was or was not included in the stimulus array,
was measured for every trial. A maximum of 20 s was
allowed for a trial. Figure 5 shows the results of the
study by Boynton and Boss'® characterized by the two
measures of performance. The cumulative percentage
of trials in which subjects correctly reported no
square (percentage of correct responses) and the
cumulative percentage of trials in which subjects cor-
rectly identified squares (percentage of targets report-
ed) are plotted as a function of search time, 7, in
seconds. For a stimulus array of 100 percent contrast,
the search times required to reach the maximum level
of performance regularly decrease as background
luminance increases (Figure 5a, c¢). Similarly, for a
background luminance of 1370 cd m™% the search
times to reach maximum levels of performance regu-
larly decrease as the stimulus array contrast increases
(Figure 5b and d). Qualitatively, these findings are like
those predicted in the visual performance model;
visual performance should increase regularly with
‘both background luminance and target contrast.
Quantitatively, however, it is impossible to compare
the visual performance model and the search data
because the experimental paradigm used by Boynton
- and Boss, and possibly in all search experiments, pro-
. bably confounds the number of targets searched with
the difficulty of the visual conditions.

Response time and number of stimuli searched Response
times can be affected by the visual processing time for
each target (ie., visual performance) or, obviously, by
the number of targets actually processed; the fewer to
be searched the shorter the response times. The main
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problem with the Boynton and Boss procedure is that
one does not know how many stimuli were actually
processed. Their recorded times are based upon an
unknown mixture of visual processing time and
searching time. To isolate visual performance in these
experiments one would have to estimate, and then
eliminate, search time, which is comprised of time for
each eye movement and total number of eye move-
ments. It is probably not possible to use a simple con-
stant to estimate search time; it is logical that subjects
will systematically look at fewer stimuli under better
visual conditions (high luminance and high contrast).
By definition, targets become more visible as the
stimulus conditions improve. Under these more con-
spicuous stimulus conditions, then, subjects would
make fewer eye movements to find the target. The
manner of visual search changes, therefore, with the
level of visibility, so that the number of targets actually
searched tends to be systematically fewer as visual con-
ditions improve. As a consequence, searching time is
probably confounded with the difficulty of the stimu-
lus conditions. Without accurate eye movement data,
yielding both time of each eye movement and how
many were made, it would be impossible to estimate
searching times or to evaluate the data in terms of a
visual performance model.

Conclusions In the Landolt ring search task the stimuli
are usually arranged in a matrix. One might suppose
that subjects would scan the stimuli in a regular man-
ner (eg., top left to bottom right), looking at every
target once. This may not always be true. Some rows or
rings within rows may be missed inadvertently. Simi-
larly, some rows or rings may be scanned repeatedly.
If these are random occurences, it is only necessary to
collect more data to determine the relative changes in
visual performance with variations in contrast, lumi-
nance, size, etc. It seems possible, particularly with the
configuration of stimuli in the Boynton and Boss ex-
periment, that there may be systematic changes in the
number of stimuli scanned, depending upon the
quality of the stimulus conditions. Because the num-
ber of targets scanned may be confounded with the
difficulty of the visual conditions (even in the Landolt
ring search studies), precautions must be taken to
determine the number of targets actually searched as
well as the time to perform the task. Otherwise visual
performance cannot be evaluated.

Contrast threshold task

Several investigators®? have used contrast thresh-
old tasks to identify the lower limits of visual perfor-
mance. Usually, luminous increments are presented to
subjects on various luminous backgrounds. The pro-
babilities of detecting luminous increments (con-
trasts) of different magnitude on a given luminous
background are obtained only after many trials. A
sigmoid function generally describes the relation be-
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RELATIVE VISUAL PERFORMANCE

Figure 1—Three-dimensional representation of visual performance model for
alphanumeric reading material.* Relative visual performance, scaled linearly, is plotted
as a function of task contrast and background luminance, both scaled logarithmically
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Fignre‘ 2—Comparison of score values for the numerical verification task and predic-
tions of visual performance model.* The four curves through the score data were
obtained from equation (Al). Model predictions (solid lines) are normalized using

one factor equal to 60.66
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Figure 3—Comparison of score values at the numerical verification task.*® The
shaded area is bounded by the 12 and 169 cd m?* score curves from Figure 2. The
solid curve through the score values defined by Rea® is obtained from equation (Al)
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Figure 4—Comparison of visual search performance in two experiments conducted
by Weston.?? Both sets of curves represent performance scores for subjects searching
for Landolt rings with a specific (3-min) gap orientation. The two sets of data were
scaled differently in an attempt to match the trends in performance score at high
and medium contrasts. Dashed lines are the performance curves at three task con-
trasts (top to bottom, 092, 068 and 0.36) smoothed by Weston for his first experi-
ment; score values may be obtained from the right ordinate. Solid lines are the per-
formance curves smoothed by Weston at four task contrasts (top to bottom, 097, 056,
039 and 0.28) for his second experiment; score values may be obtained from the left
ordinate. (Reprinted with permission HMSO, London)
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Figure 5—Visual search data, from Boynton and Boss."®
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Figure 6—Probability of detection curves for luminous increments on high and low
background luminances. The probability of detection equal to 05 is taken as the con-
stant criterion giving visual threshold for any background luminance. Abscissa values
for points A and B are contrast thresholds at the two background luminances, defin-
ed as equally visible in the CIE model® Abscissa values for points C and D are con-
trast values four times those at A and B, respectively, and at their respective back-
ground luminances are defined as equally visible in the CIE model. Contrast is
defined as the difference between the luminance of the target and that of the
background divided by the luminance of the background
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a numerical recitation task (from
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from the visual performance model
(from Rea*), dashed lines. Model predic-
tions not normalized.
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tween the logarithm of the luminous increment on a
fixed background and the probability of detecting the
increment, ranging from 0 to 1 (Figure 6).

From the probability of detection curves a visual
threshold can be determined. This is defined as a con-
stant, psychophysical criterion producing a fixed level
of sensation, usually taken as the break-point between
perceptible and imperceptible. For a detection task at
one background luminance, contrast threshold is
represented by a fixed probability of detection, p;
usually p = 05. Once the criterion has been establish-
ed it is possible to derive a contrast threshold func-
tion that defines contrast threshold at various back-
ground luminances. That is, the contrast required to
reach threshold, obtained from each probability of
detection curve, is plotted against the background
luminance for which the probability of detection data
were obtained (eg, VL1 in Figure 7).

Visibility level

A model based largely upon detection threshold

studies by Blackwell and his co-workers*** has been
developed to characterize suprathreshold as well as
threshold visual performance®*® In this CIE model
suprathreshold levels of visual performance are repre-
sented by so-called Visibility Levels (VL) derived from
the contrast threshold values. The contrast threshold
curve for detecting a small disc, called the Visibility
Reference Function, VLI, has been taken to represent
the basic relation between background luminance
and threshold contrast.** Higher criterion levels rep-
resenting constant suprathreshold levels of visual per-
formance are obtained by simply multiplying the
Visibility Reference Function by a fixed factor (see
caption, Figure 6). VL8 in Figure 7, for example, is the
equal visibility curve relating background luminance
to contrasts eight times those at VLI.
Probabilities of detection equal to unity In the CIE
model,** two parameters, M and s, of a cumulative
normal distribution describe the sigmoids (or so-
called normal ogives) fitting the probability of detec-
tion data at each background luminance (eg. Figure
6). M is the mean of the normal distribution of con-
trast values (corresponding to the 0.5 probability of
detection) and s is its standard deviation. The latter
parameter characterizes the steepness of the sigmoid.
Blackwell reports (see Technical Note 16*) that the
ratio s/M is a constant equal to 037 for all background
luminances.

The probability of detection curves for all back-
ground luminances eventually become equal to unity
at high contrast. It is quite unlikely, however, that the
high contrast targets will, in fact, produce the same
level of visual performance at different background
luminances. Reaction times to equally high contrast
stimuli are different at different background lumi-
nances.®® Similarly, the levels of performance at the
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numerical verification task are systematically differ-
ent for the same high-contrast targets at various back-
ground luminances.* These results are consistent
with the wealth of literature on the Pulfrich pendu-
lum phenomenon (eg, Lit*)*** It is therefore im-
possible to use this methodology directly to discrimi-
nate between levels of suprathreshold visual perfor-
mance.

By the same token, the probability of detection
methodology cannot be used to validate a central
assumption in the CIE model, namely, that contrasts
on the same VL function (eg,, VL8 in Figure 7) will
produce the same level of suprathreshold visual per-
formance. When all of the probabilities of detection
associated with high contrast targets are equal to
unity, it is not only impossible to use those data to
discriminate among levels of suprathreshold visual
performance (discussed in the previous paragraph)
but also impossible to validate the assumption that all
the points on a single Visibility Level function give
the same level of visual performance. Another techni-
que, perhaps using reaction time, would have to be
employed to test the assumption directly.

It seems unlikely, however, that this assumption is
valid.* It has been shown that constant criterion
curves from the visual performance model for lumi-
nous decrements are not simple multiples of the
lowest (threshold) criterion function. Graphically, the
constant criterion curves are not parallel in a space
defined by log contrast (ordinate) versus log back-
ground luminance (abscissa) axes; the separation in
contrast between constant criterion curves is greater
at low luminances than at high (Figure 8). This in-
creased separation at low luminances happens
because the level of maximum visual performance
associated with maximum contrast at a given back-
ground luminance increases systematically as back-
ground luminance increases. Since it was impossible
to attain as high a level of visual performance at low
background luminances as at high, even for maximum :
contrast (unity for luminous decrements), it is im-
possible for the constant criterion curves (ie., Visibili-
ty Levels) to be parallel throughout the log contrast
versus log background luminance space, as supposed
in the CIE model and illustrated for luminous in-
crements in Figure 7.

Effects of guesswork or response bias on probability of detec-
tion In these experiments the probability of chance
detection (guessing) is determined in an attempt to
isolate the visual threshold from the non-sensory

*#4%A high contrast pendulum swinging in one plane will appear to swing
in an elliptical path when viewed binocularly if the two eyes are not
adapted to the same light level. The latency of the signal from the eye
adapted to the lower light level is lower in reaching binocular cells in the
brain than is the signal from the eye adapted to the higher level. This dif-
Jerence in latency, dependent upon the difference in the adaptation
Iuminances, presumably produces the illusion.”
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contributions to the subjects’ responses. One of two
options is generally employed to characterize the visu-
al threshold. With the first option a criterion equal to
chance detection is chosen as the probability of detec-
tion to represent visual threshold. If, for example, one
is forced to decide whether a target is presented to the
left or to the right of a fixation point, the subject has
a 50 percent chance of guessing the correct location.
Probabilities greater than chance (in this case p = 0.5)
are taken as visual events. Thus, a 0.5 probability of
detection criterion is taken as visual threshold, the
break-point between perceptible and imperceptible.
Response bias presents a difficulty with this approach.
For example, if subjects are biased to say “right” all the
time, the best score would be p = 05, no matter how
high the contrast. This, of course, would never hap-
pen, but if subjects have some degree of response bias
and it is unknown, all of the probability of detection
data would reflect both visual response and psycholo-
gical bias.

With the second option, the raw probability of
detection (p) data are mathematically transformed, ac-
cording to the following formula, into a new set of
probability of detection (p’) data in an attempt to cor-
rect for guesswork.®

p=(@-9fr (2)
where q is the probability of guessing the correct
answer r is the probability of guessing the wrong
answer andr + q = L

As with the first method, chance behavior is typical-
ly taken as an estimate of q. For the example given,
both r and q are equal to 0.5. Thus, for p = 05, p’ =
0.0. Values of p’ greater than 0.0 can be taken as greater
than threshold. As with the first method, response
bias can play a part in the transformed probabilities
of detection. Blackwell and Scott,” for example, have
shown that the values of q and r cannot always be char-
acterized simply by chance detection; their transform-
ed probability of detection data are still combinations
of seeing and non-randon guessing. Steps had to be
taken to transform these data further in order to elim-
inate response bias. Blackwell and Scott used an empir-
¢ ical, graphical correction procedure to adjust values
i of p’ It applies only to their data, but such efforts il-
¢ lustrate the difficulty of isolating visual response in
probability of detection data.

In many experiments (not just detection tasks) re-
sponse biases have been neither assessed accurately
nor documented. In these cases the probability of de-
tection data should be suspect. The choice of criterion
probabilities to represent threshold may be arbitrary
and unrepresentative of the visual response. Occasion-
ally, special experimental techniques or methods of
analysis (as in the Blackwell and Scott experiments)
must be employed to eliminate response bias.
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Conclusions The probability of detection methodology
has been used to model suprathreshold visual perfor-
mance, but there can be fundamental difficulties in
the response measure that limit its utility. First, high
contrast targets associated with probabilities of detec-
tion equal to unity (or the same Visibility Level value)
at different background luminances do not always
produce the same level of visual performance. Second,
special care must be taken to ensure that the pro-
bability of detection curves are not contaminated by
subject response biases.

A timed recitation task

McNelis' conducted an unusual study of visual per-
formance when on each trial an observer was required
to name two briefly-presented (0.4 s) small letters (8
min in size) separated by a 10-degree visual angle. The
letters were presented at different contrasts (luminous
decrements) and at different background luminances.
Accuracy (correct identifications) was used as the
dependent variable. Performance was better for the
left letter than for the right letter. As confirmed by eye
movement data, there was not enough time for sub-
jects to identify the second (right) letter in 0.4 s except
at high luminances and contrasts. McNelis’ accuracy
data for the left letter have been redrawn from data
supplied by him and presented in Figure 9.

Methodological issues

The McNelis study was well documented, but it did
not make entirely clear whether subjects’ heads were
restrained. He has confirmed in a personal communi-
cation that head positions were indeed restrained by
a chin rest. Postural changes in response to reductions
in luminance were prevented, so that apparent size
and luminance were not confounded in the study.
McNelis also notes in a personal communication that
contrast measurements were difficult to make and
that there may be some uncertainty in the values; such
uncertainty makes predictions of performance, par-
ticularly for low contrast stimuli, more tenuous.

Professor SW. Smith points out in discussion of the
McNelis study that subjects did not operate at a
chance level of accuracy; correct identifications ap-
proached zero under difficult conditions. Subjects
were apparently biased in their responses against
errors of commission (ie., false positives). Because the
number of correct responses due to guesswork were
apparently very small, the simple measure of accuracy
as the dependent variable was probably (but not cer-
tainly) representative of visual performance.

Comparison with predictions from the visual performance
model

Other than the potential problem of estimating
absolute contrast, the methodologies employed in the
McNelis study appear to avoid most of the problems
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outlined in this paper. For this reason it seems ap-
propriate to compare predictions of the visual perfor-
mance model developed by Rea in an earlier paper*
with McNelis’ accuracy data. Both the model predic-
tions and McNelis’ accuracy data are shown in Figure
9. The model predictions at the three contrasts were
all normalized by use of a single factor of 100.
Agreement between McNelis’ data and the model
predictions are excellent at the two higher contrasts.
Even at the lowest contrast they are reasonably good.
Difficulties in both model predictions and the
McNelis data are evident, however, in Figure 9. First,
the model predictions at the lowest contrast are prob-
ably inaccurate to some degree; the slope of this low-
est function does not continue to decrease with in-
creases in background luminance, as one would ex-
pect. More refined estimates of visual performance at
the lowest contrast values are required. Second, the
contrast values reported by McNelis are, as he indi-
cated, probably inaccurate. Examining his data for the
highest luminance, it is clear that the difference in
performance is greater for contrasts of 0.5 and 0.25
than for 0.25 and 0.125. It would be more reasonable
to expect the difference in performance to be larger
for the latter two contrasts than for the former pair.
Inaccuracy in evaluating the contrast of task materials
is, of course, problematic in evaluating the visual per-
formance model. Again, care must be taken to specify
contrasts of task materials accurately, particularly at
the lowest contrasts, because visual performance
changes most rapidly just above contrast threshold.

Conclusions

The study by McNelis' appears to avoid most of the
procedural problems outlined in this paper. One
would expect, then, good agreement between predic-
tions from the visual performance model and the
reported accuracy data. Indeed, there was marked
similarity between model predictions and the data,
despite obvious procedural differences between the
numerical verification task and those used by
McNelis. It appears that the McNelis procedures could
easily be used to extend and validate the visual perfor-
mance model.

Discussion and conclusions

In the past it may have been less important to ob-
tain precise estimates of stimulus conditions or visual
performance as distinct from overall task perfor-
mance. Traditional recommendations of illumination
levels for various tasks were made without specifying
factors important to vision, such as task reflectance
and contrast® Only very general information about
task performance was necessary to make lighting
recommendations of this kind and, perhaps rightly,
investigators did not strive for experimental precision
greater than that required by the various national and
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international sanctioning bodies. Perhaps, too, practi-
tioners have been coricerned with lighting real tasks
and many investigators deliberately studied overall
performance at different kinds of simulated, realistic
tasks. These experiments gave a general indication of
how performance is affected by lighting, but for many
of them it was not possible to isolate the contribution
of each visual factor to performance nor to disen-
tangle the visual factors from non-visual ones that con-
tribute to performance. It was not possible, therefore,
to determine how important lighting is to visual per-
formance at a task.

There has been recent emphasis on more exacting
specification of the conditions important for visual
performance, as reflected in more refined recommen-
dations of illuminance.? Size, contrast and the age of
the worker are important factors that must be
specified when determining levels of illumination. If
it is necessary to follow the more precise recommen-
dations of lighting quantity and quality for visual per-
formance, then it is necessary to have more explicit
knowledge of the relationships between luminous
parameters and visual performance.

The model proposed by Rea* is an attempt to pro-
vide quantitative predictions of visual performance at
an alphanumeric reading task from the photometric
specification of the luminous stimuli. Based upon a
variety of arguments, the proposed model seems to be
an adequate, first-order characterization of visual per-
formance at that kind of task. It is not necessarily far-
reaching in its predictive capabilities (eg.,, different °
text sizes and age groups are not included), nor has it
been completely verified. For reasons outlined in the
present paper, problems with experimental pro-
cedures, photometric measurements, and indices of
performance limit the utility of many earlier studies
for validating and extending the visual performance
model. It is therefore necessary to design and control
future experiments more carefully in order to assess :
and extend the model predictions. The recommenda-
tions for future experiments on visual performance
identified in this paper are summarized in Recom- :
mendations below.

Although more experiments must be executed to
validate and extend the visual performance model,
the close correspondence of the model predictions
with well controlled electrophysiological® and psy-
chophysical' studies implies that it will be an impor-
tant step in developing a general model of supra-
threshold visual performance. When the necessary ex-
periments have been completed and a final visual per-
formance model is established, it will be possible to
make more precise lighting recommendations, and,
importantly, to justify them.

Recommendations
It goes without saying, perhaps, that experiments




should be well designed, executed, and analyzed.
Barber,*” for example, identified important issues in
conducting experiments and describing the results.
Care should be taken to adhere to this credo in future
experiments on visual performance. Common, recurr-
ing problems specific to past studies of visual perfor-
mance have been identified in this paper and deserve
special mention.

Independent variables

Accurate measurements of apparent luminance,
contrast, and size must be obtained, and must repre-
sent the conditions actually experienced by the
subjects.

Dependent variables

Indices of performance should not distort visual
response. Simple measures of time and errors rather
than arbitrary scoring indices should be used. The
measures should be sensitive to changes in visual
response across experimental conditions. Equal pro-
babilities of detection at different background lumi-
nances, for example, do not necessarily result in equi-
valent levels of suprathreshold visual performance.
The response measures should also limit the in-
fluence of non-visual factors.

Proper experimental designs must be used to elimi-
nate various sources of confounding. Subject sub-pop-
ulations should not be confounded with experimental
variables. Absolute differences in subjects’ response
levels can mask differences in performance due to ex-
perimental variables. Systematic behavioral changes
in response to experimental variables should be elimi-
nated. For example, leaning forward as illuminance
levels are reduced confounds the effects on vision of
apparent size and background luminance. Similarly,
in a search experiment the number of stimuli inspect-
ed may be confounded with background luminance.
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Appendix A :

All the score data in Figures 2 and 3 were fitted with
the same general form of equation (1) developed by
Rea! This equation is repeated in equation (Al)
below in a slightly different form. Parameter estimates
for each set of data were obtained by a least squares
criterion using a non-inear regression computer
routine.

RR,.. = ACAC" + k") (Al)
where

R = score in equation (1)

R... = a free parameter equal to the
maximum score for a given background
luminance, Ly

n = a free parameter affecting the shape of
the curve

ko = a free parameter, also affecting the
shape of the curve, representing the in-
crement in contrast above threshold
contrast (C,) producing half maximum
response. )

AC = C, - C, (A2)

C, = task contrast = (Ly — L;/Lg) (A3) »

where

Ly = task background (eg., paper) luminance

L, = task target (eg, printed digit) luminance

Ly > Ly

C, = C, at contrast threshold




