Collaborative Design of a Multi-functioning Building Envelope

Feb 12, 2014

This paper details the design evolution of a multi-functioning building envelope. The range of functions and performance achieved by the envelope were the result of close collaboration of faculty, students, and external consultants in architecture, electrical engineering, mechanical engineering, structural engineering, composite materials science, lighting design, and computer science.

The envelope was designed with particular attention to tropical climate conditions. The envelope is comprised of: (a) semi-monocoque shell structure with tension bracing, (b) thermally-broken stressed FRP interior/exterior skins, (c) aerogel cavity granular insulation encapsulated in polycarbonate panels, (d) computer-controlled color-changeable LED light strips, (e) variable cavity ventilation system, and (f) external photovoltaic computer-controlled louvers.

These elements were designed to have the following attributes and functions: (a) lightweight structure for minimal material use, (b) watertight enclosure for flotation, (c) minimal thermal envelope gains/losses, (d) variable daylighting, (e) variable artificial lighting color, intensity, position, and pattern, and (f) variable incident PV angle for optimal energy harvesting.

The steps in discovering, understanding, and capitalizing on the various and synergistic relationships among materials, assemblies, and systems to achieve high-level performance design objectives are detailed. The paper uses the specific case of a building envelope design to advocate for the more general need to assemble collaborative relationships in order to provide multi-functionality and systems synergy and to thereby achieve higher levels of performance and materials/system efficiency.

keywords: multi-functioning, envelope, tropical, photovoltaic, daylighting

David Rockwood (University of Hawaii at Manoa)
Presented at: 
ARCC/EAAE 2014 International Conference on Architectural Research (Honolulu, HI)
Published & professionally reviewed by: 
Architectural Research Centers Consortium (ARCC)
University of Hawaii at Manoa

Community Reviews

No votes yet